

UNIVERSITÀ DEGLI STUDI DI PALERMO

DIPARTIMENTO	Ingegneria
ANNO ACCADEMICO OFFERTA	2021/2022
ANNO ACCADEMICO EROGAZIONE	2021/2022
CORSO DILAUREA MAGISTRALE	INGEGNERIA ENERGETICA E NUCLEARE
INSEGNAMENTO	FISSION AND FUSION NUCLEAR POWER PLANTS
TIPO DI ATTIVITA'	В
AMBITO	50367-Ingegneria energetica e nucleare
CODICE INSEGNAMENTO	19661
SETTORI SCIENTIFICO-DISCIPLINARI	ING-IND/19
DOCENTE RESPONSABILE	DI MAIO PIETRO Professore Ordinario Univ. di PALERMO ALESSANDRO
ALTRI DOCENTI	
CFU	9
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	144
NUMERO DI ORE RISERVATE ALLA DIDATTICA ASSISTITA	81
PROPEDEUTICITA'	
MUTUAZIONI	
ANNO DI CORSO	1
PERIODO DELLE LEZIONI	2° semestre
MODALITA' DI FREQUENZA	Facoltativa
TIPO DI VALUTAZIONE	Voto in trentesimi
ORARIO DI RICEVIMENTO DEGLI STUDENTI	DI MAIO PIETRO ALESSANDRO
	Lunedì 10:00 11:00 Dipartimento di Energia, Ingegneria dell'Informazione e Modelli Matematici - Edificio 6 - I Piano - Stanza 115
	Mercoledì 10:00 11:00 Dipartimento di Energia, Ingegneria dell'Informazione e Modelli Matematici - Edificio 6 - I Piano - Stanza 115
	Venerdì 10:00 11:00 Dipartimento di Energia, Ingegneria dell'Informazione e Modelli Matematici - Edificio 6 - I Piano - Stanza 115

DOCENTE: Prof. PIETRO ALESSANDRO DI MAIO

PREREQUISITI

Conoscenze dei fondamenti di:

- calcolo differenziale ed integrale
- fisica classica
- meccanica del continuo
- teoria del trasporto di massa, quantità di moto ed energia
- principi di ingegneria nucleare

RISULTATI DI APPRENDIMENTO ATTESI

CONOSCENZA E CAPACITA' DI COMPRENSIONE

Lo studente, al termine del corso, avra' maturato un opportuno livello di conoscenza e di capacita' di comprensione sui seguenti argomenti:

- Reattori a fissione nucleare di Generazione I e II: principali filiere e relativi schemi di impianto
- Reattori a fissione nucleare di Generazione III, III+ e IV: principali filiere, relativi schemi di impianto e aspetti di sicurezza intrinseca e passiva
- Elementi di regolazione di un reattore a fissione nucleare
- Ingegneria dei principali componenti di un reattore a fissione nucleare (vessel, barre di combustibile, circuiti di refrigerazione, pressurizzatore, generatore di vapore)
- Reazioni di fusione nucleare, plasmi, sezioni d'urto, tasso di reazione, parametro di reazione
- Processi collisionali, effetto Debye, radiazioni di frenamento e di ciclotrone
- Modelli fisico-matematici per la descrizione della dinamica particellare ed energetica di un plasma
- Analisi energetica di un plasma: break-even, ignizione e relativi criteri di Lawson
- Metodo di confinamento inerziale di un plasma
- Metodo di confinamento magnetico di un plasma, moto di una particella carica in un campo di induzione magnetica, specchi magnetici, macchine TOKAMAK e Stellarator
- Problematiche tecnologiche connesse allo sfruttamento su scala industriale della reazione di fusione nucleare e principali schemi di impianto allo studio La valutazione avverra' tramite prova orale.

CAPACITA' DI APPLICARE CONOSCENZA E COMPRENSIONE

Lo studente, al termine del corso, avra' maturato un opportuno livello di conoscenza e di comprensione applicate sui seguenti argomenti:

- Analisi e dimensionamento del core di un impianto nucleare
- Analisi e dimensionamento di componenti di un impianto nucleare (vessel, barre di combustibile, loop di refrigerazione, pressurizzatore, generatore di vapore)
- Studió della dinamica particellare ed energetica di un plasma D T tramite un modello a parametri concentrati
- Analisi delle prestazioni di un sistema di confinamento magnetico aperto
- Analisi delle prestazioni di un sistema di confinamento magnetico chiuso di tipo TOKAMAK

La valutazione avverra' tramite prova orale.

AUTONOMIA DI GIUDIZIO

Lo studente, al termine del corso, avra' maturato un opportuno livello di autonomia di giudizio sui seguenti argomenti:

- Comprensione di rapporti tecnici pertinenti ad impianti ad alta intensita' energetica
- Progettazione di componenti di sistemi industriali ad alta intensita' energetica con specifico riferimento a quelli nucleari a fissione secondo le normative di sicurezza di pertinenza (ASME, SDC-IC, RCC-Mrx)
- Dinamica particellare ed energetica di un plasma D-T
- Valutazione delle prestazioni di componenti ad alto flusso termico e mantelli triziogeni di reattori a fusione

La valutazione avverra' tramite prova orale.

ABILITA' COMUNICATIVE

Lo studente, al termine del corso, avra' maturato un opportuno livello di dimestichezza con il linguaggio tecnico-scientifico impiegato nell'ambito dell'ingegneria degli impianti ad alta intensita' energetica con specifico riferimento a quelli nucleari a fissione ed a fusione.

La valutazione avverra' tramite prova orale.

CAPACITA' D'APPRENDIMENTO

Lo studente, al termine del corso, avra' sviluppato la capacita' di apprendere le problematiche scientifico-tecnologiche che caratterizzano lo sviluppo e la progettazione dei piu' rilevanti componenti di reattori nucleari a fissione ed a fusione.

La valutazione avverra' tramite prova orale.

VALUTAZIONE DELL'APPRENDIMENTO

L'esame prevede la prova orale, valutata in trentesimi. Il voto minimo per superare la prova e' 18/30.

La prova ha una durata di 40÷50 minuti e consiste in un colloquio, articolato in almeno tre domande a risposta aperta inerenti l'intero programma del corso. Essa e' finalizzata ad accertare:

- il grado di conoscenza, comprensione e padronanza dei contenuti del corso (50% della valutazione finale);
- la capacita' di applicare con autonomia di giudizio e rigore metodologico le conoscenze e competenze acquisite all'analisi ed alla soluzione di problematiche tipiche della disciplina (30% della valutazione finale);
- la proprieta' di linguaggio e la chiarezza espositiva (10% della valutazione finale):
- le capacita' di rielaborare criticamente i concetti acquisiti, collocandoli nella opportuna connessione logica con le varie tematiche affrontate nel corso ed in quelli ad esso affini (10% della valutazione finale).

METRICA DI VALUTAZIONE

- 30 30 e lode (ottimo): ottima conoscenza e padronanza dei contenuti del corso illustrata con piena proprieta' di linguaggio e chiarezza espositiva, spiccata attitudine ad applicare con autonomia di giudizio e rigore metodologico le competenze acquisite rielaborandole criticamente.
- 27 29 (distinto): piena conoscenza dei contenuti del corso illustrata con proprieta' di linguaggio e chiarezza espositiva, capacita' di applicare con buona autonomia di giudizio e rigore metodologico le competenze acquisite. 24 26 (buono): buona conoscenza dei contenuti del corso illustrata con proprieta' di linguaggio, modesta capacita' di applicare con una discreta autonomia le competenze acquisite.
- 22 24 (soddisfacente): soddisfacente conoscenza dei principali contenuti del corso illustrata con linguaggio tecnico accettabile, scarsa autonomia nell'applicazione delle competenze acquisite.
- 18 21 (sufficiente): conoscenza minimale dei contenuti essenziali del corso e del pertinente linguaggio tecnico, scarsa o nulla autonomia di applicazione delle competenze acquisite.

OBIETTIVI FORMATIVI

Il corso e' volto ad approfondire le tematiche connesse al funzionamento ed alla progettazione dei principali componenti di impianti nucleari di potenza a fissione e ad fusione, mirando alla maturazione di una loro visione completa e sistemica, dal punto di vista funzionale, strutturale e progettuale.

Con riferimento agli impianti nucleari a fissione, l'attenzione e' focalizzata sulle loro modalita' di funzionamento e di regolazione nonche' sulla individuazione dei loro componenti chiave e delle relative funzioni. Successivamente si descrivono le caratteristiche costruttive e funzionali di tali componenti e se ne illustrano i fondamenti di progettazione e verifica delle prestazioni. In particolare, l'attenzione si concentra sulla descrizione delle metodologie di progettazione termo-idraulica e termo-meccanica di tali componenti, approfondendo l'aspetto concernente le normative di sicurezza di pertinenza (ASME, SDC-IC, RCC-Mrx). Infine, si procede all'applicazione dei criteri e delle metodiche di progettazione e verifica ingegneristica ai seguenti componenti di impianto: barre di combustibile, vessel, pressurizzatore e generatori di vapore.

Con riferimento agli impianti nucleari a fusione, l'attenzione e' focalizzata sulle principali reazioni di fusione nucleare ipotizzate per l'impiego su scala industriale e sulle relative caratteristiche energetiche. Si introduce il concetto di plasma quale quarto stato di aggregazione della materia e se ne definiscono le principali grandezze fisico-matematiche che ne consentono la caratterizzazione del comportamento, quali la funzione di distribuzione delle specie particellari, la temperatura assoluta nonche' il tasso ed il parametro di reazione. Si esaminano i principali processi collisionali tra particelle cariche di un plasma, introducendo il concetto di lunghezza di Debye e si appunta l'attenzione sull'emissione di radiazioni di bremsstrahlung e di ciclotrone. Si procede allo sviluppo di un modello semplificato a parametri concentrati di un plasma omogeneo ed uniforme, che viene applicato al caso di un plasma D-T, consentendo di studiarne la dinamica particellare ed energetica. Infine, si introducono i concetti di break-even ed ignizione e se ne derivano i pertinenti criteri di Lawson. Successivamente, l'attenzione e' focalizzata sul confinamento del plasma e sulle relative metodologie, con particolare riferimento al confinamento magnetico, nel qual caso si studia il moto di una particella carica in un campo elettromagnetico in presenza di campi esterni, evidenziandone i moti di deriva e gli invarianti del moto. Si analizzano le caratteristiche e la stabilita' dei sistemi di confinamento magnetico aperti e chiusi, con particolare attenzione agli specchi magnetici ed alle macchine TOKAMAK. Infine si studiano i principali componenti di un reattore TOKAMAK, quali i magneti, il blanket ed i componenti ad alto flusso.

ORGANIZZAZIONE DELLA DIDATTICA

L'attivita' didattica e' organizzata in lezioni frontali ed esercitazioni di tipo computazionale, prevalentemente svolte con il supporto di software di calcolo matematico.

TESTI CONSIGLIATI

- M. Cumo, Impianti Nucleari, UTET, 1996, ISBN: 8895814630
- C. Lombardi, Impianti Nucleari, CUSL, 2004, ISBN: 8873980554
- N. E. Todreas, M. S. Kazimi, Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, CRC Press, 2011, ISBN: 1439808872
- N. E. Todreas, M. S. Kazimi, Nuclear Systems Volume II: Elements of Thermal Hydraulic Design, CRC Press, 2021, ISBN: 1482239582
- T. Dolan, Fusion Research Vol. I-III, Pergamon Press, 1982, ISBN-10: 0080255655
- Harms et alii, Principles of Fusion Energy, World Scientific, 2000, ISBN: 9812380337
- F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, 2015, ISBN: 9783319223087

PROGRAMMA

PROGRAMINA		
ORE	Lezioni	
1	Principio di funzionamento di un reattore a fissione	
3	Classificazione dei reattori nucleari a fissione in I, II, III+ e IV Generazione - Principali filiere e relativi schemi di impianto - Sicurezza intrinseca e passiva	
5	Componenti principali di un impianto a fissione nucleare: barre di combustibile, barre di controllo, vessel, pressurizzatore, loop di refrigerazione, pompe, generatore di vapore	
4	Elementi di regolazione di un reattore a fissione	
5	Ingegneria delle barre di combustibile di un impianto nucleare	
7	Ingegneria dei principali componenti di un impianto a fissione nucleare (vessel, loop di refrigerazione, pressurizzatore, generatore di vapore)	
3	Elementi di normativa per la progettazione e la verifica di sicurezza in ambito nucleare (Norme ASME, SDC-IC, RCC-Mrx)	
2	Reazione di fusione nucleare - Energia di soglia - Sezione d'urto	
4	Il plasma - Funzione di distribuzione e densita' volumetrica di una specie particellare - Tasso di reazione di una data interazione tra specie particellari di un plasma - Parametro di reazione	
4	Processi collisionali di particelle cariche - Effetto Debye - Radiazioni di bremsstrahlung e di ciclotrone	
3	Modello cinetico di un plasma - Campo di validita' e limiti di applicazioni - Equazione del trasporto di Boltzmann per una generica specie particellare di un plasma - Accoppiamento con le equazioni di Maxwell e con le equazioni di chiusura	
5	Modello dinamico di un plasma omogeneo, uniforme ed isotropo - Derivazione delle equazioni di continuita' e dell'energia per una generica specie particellare del plasma - Tempo di confinamento delle particelle e dell'energia	
4	Analisi energetica di un plasma - Metodi di riscaldamento del plasma - Processi di raffreddamento del plasma - Fattore di amplificazione dell'energia - Condizioni di ignizione e break-even e relativi criteri	
1	Confinamento del plasma - Confinamento gravitazionale, inerziale e magnetico	
4	Confinamento magnetico - Moto di una particella carica in un campo di forze di Lorentz - Raggio di Larmor e frequenza di ciclotrone - Moti di deriva di una particella carica sottoposta ad un campo di forze di Lorentz, variabile in modulo e/o in direzione, ed ad un campo di forze esterne - Invarianti del moto di una particella carica	
2	Sistemi di confinamento magnetico aperti: principio di funzionamento, cono di perdita, efficienza di confinamento	
4	Sistemi di confinamento magnetico chiusi: principio di funzionamento - Macchina TOKAMAK: principio e modalita' di funzionamento, efficienza di confinamento e fenomeni di instabilita' - Macchina Stellarator: principio e modalita' di funzionamento	
4	Principali componenti di un reattore di tipo TOKAMAK: magneti, blanket e componenti ad alto flusso - Interazioni plasma-parete ed effetto delle impurita	
1	Programma internazionale di R&D sulla fusione nucleare - Reattori JET, ITER e DEMO - Macchina IFMIF	
ORE	Esercitazioni	
3	Analisi e dimensionamento del core di un impianto a fissione nucleare	
6	Analisi e dimensionamento di componenti di un impianto a fissione nucleare (barre di combustibile, vessel, loop di refrigerazione, pressurizzatore, generatore di vapore)	
3	Analisi della dinamica particellare ed energetica di un plasma DT omogeneo, uniforme ed isotropo	
3	Valutazione dell'efficienza di confinamento di sistemi di confinamento magnetico aperti e chiusi	