C.I. 3

EACOLTÀ	MEDICINA E CHIDLIDCIA
FACOLTÀ	MEDICINA E CHIRURGIA
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE	Odontoiatria e Protesi Dentaria
CORSO INTEGRATO	C.I. 3 - Biologia e Genetica
TIPO DI ATTIVITÀ	Base/1
AMBITO DISCIPLINARE	Discipline generali per la formazione
	dell'odontoiatra
CODICE INSEGNAMENTO	01617
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO DISCIPLINARI	BIO/13
DOCENTE RESPONSABILE	Mario G. Mirisola
(MODULO 1 - Biologia Generale e	Ricercatore
Applicata)	Università di Palermo
DOCENTE COINVOLTO	Mario G. Mirisola
(MODULO 2 - Genetica Generale e	Ricercatore
Applicata)	Università di Palermo
CFU	11
NUMERO DI ORE RISERVATE ALLO	165
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	110
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica
ANNO DI CORSO	PRIMO
SEDE DI SVOLGIMENTO DELLE	Via Divisi 83
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Attività didattica frontale: lezioni, esercitazioni
	ed attività didattiche assistite
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	Prove verifica in itinere tramite quiz a risposta
	multipla e/o aperta.
	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Marzo-Giugno 2013
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Mario G. Mirisola –Venerdi 15.00-17.00
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Si riferiscono all'insegnamento/corso integrato e non ai singoli moduli che lo compongono.

Conoscenza e capacità di comprensione

Al termine del Corso lo Studente deve avere acquisito le conoscenze più attuali nell'ambito della Biologia e della Genetica; deve avere compreso i meccanismi che stanno alla base del metabolismo, della proliferazione cellulare e della trasmissione dei caratteri ereditari.

Capacità di applicare conoscenza e comprensione

Sapere applicare le elaborazioni derivate dalla conoscenza dei processi biologici che stanno alla base del metabolismo della riproduzione e della trasmissione dei caratteri ereditari nell'uomo sia normali che patologici. Capacità di applicare le nozioni apprese dalla disciplina del Corso Integrato

negli interventi specifici della professione.

Autonomia di giudizio

Essere in grado di valutare in maniera autonoma i processi metabolici cellulari sia fisiologici che patologici. Di questi ultimi deve essere in grado di capire le cause e le modalità della loro trasmissione.

Abilità comunicative

Avere acquisito la capacità di spiegare, in maniera semplice e chiara, a persone non esperte, i principali processi che stanno alla base dei fenomeni biologici e di interagire con i pazienti.

Capacità di apprendimento

Essere in grado di aggiornarsi continuamente tramite la consultazione dei testi più recenti e delle pubblicazioni scientifiche proprie dei settori disciplinari della Biologia e della Genetica. Deve avere acquisito le conoscenze per potere seguire Corsi di perfezionamento, Seminari specialistici e Masters.

OBIETTIVI FORMATIVI DEL MODULO: "Biologia Generale e Applicata"

Alla fine del Corso lo Studente deve avere compreso le relazioni tra struttura e funzione delle principali molecole biologiche. Deve conoscere i principali processi del metabolismo cellulare e le principali metodologie applicabili allo studio dei fenomeni biologici. Deve possedere le conoscenze di base sulla riproduzione e sullo sviluppo degli organismi viventi

MODULO 1	DENOMINAZIONE DEL MODULO: "Biologia Generale e
	Applicata
	ATTIVITA' DIDATTICHE FRONTALI
ORE	OBIETTIVI SPECIFICI E PROGRAMMA
FRONTALI	
60 ore	
2 ore	Presentazione obiettivi del corso Il metabolismo cellulare. La cellula: organizzazione strutturale e funzionale. Macromolecole cellulari.
3 ore	Le proteine: gli aminoacidi. Le strutture delle proteine: struttura I.
	Struttura II: l'α-elica e struttura β. Struttura III: Gli enzimi ed il loro
	sito attivo. Struttura IV.
4 ore	L'acido desossiribonucleico (DNA). Struttura del DNA e modelli di
	replicazione in procarioti ed eucarioti
	Struttura dei cromosomi e del genoma.
6 ore	L'acido ribonucleico (RNA) I ribonucleotidi. L'RNA ribosomiale (r-
	RNA), l'RNA di trasferimento (t-RNA) e l'RNA messaggero (m-
	RNA). L'RNA-polimerasi dei procarioti e degli eucarioti.
	II codice genetico. La decifrazione e le proprietà del codice genetico.
6 ore	La traduzione nei procarioti. Fattori di inizio, di allungamento e di
	arresto della traduzione. Antibiotici in gradi di interferire con la sintesi
	proteica batterica.
	La traduzione negli eucarioti. La biosintesi di proteine intracellulari e
	di secrezione. Il peptide segnale. Modificazioni posttraduzionali delle
	proteine.
4	Traffico intracellulare di macromolecole
4 ore	Virus e Batteri. Virus oncogeni ad RNA. Trascriptasi inversa.
	Batteri e la trasmissione del materiale genetico. Plasmidi ed episomi.
6 ore	La regolazione dell'attività genica nei procarioti. Sistemi inducibili e reprimibili.
	La regolazione dell'attività genica negli eucarioti. Regolazione della
	condensazione della cromatina, Enhancer, silencer, isolatori

Ciclo cellulare: descrizione, fattori in grado di regolare il ciclo cellulare, complessi CDK, cicline. Oncogeni e oncosoppressori. La meiosi e la mitosi. Il significato e le conseguenze genetiche. L'aploidia e la ricombinazione genica nei gameti. L'Ovogenesi e la spermatogenesi. Trasduzione del segnale: meccanismi di trasduzione del segnale: GPCR e recettori tirosina kinasi. Ruolo delle GTP binding protein nella trasduzione del segnale.
Sviluppo embrionale e differenziamento cellulare. Fondamenti dello sviluppo embrionale. Modelli di sviluppo (Drosophila, anfibi e mammiferi). Meccanismi e strategie del differenziamento cellulare. I geni omeotici e lo sviluppo embrionale. Il materiale genetico nello sviluppo embrionale. La totipotenza dei nuclei. Il trapianto dei nuclei e la clonazione. Le cellule staminali, ipsc e le possibili applicazioni terapeutiche.
Attivita seminariali, esercitazioni e attività didattiche assistite
"Biologia e Genetica" EdiSes, 2007, Napoli; Molecular cell Biology Lodish, Darnell et al. Ed Freeman

OBIETTIVI FORMATIVI DEL MODULO : GENETICA GENERALE ED APPLICATA

MODULO 2	DENOMINAZIONE DEL MODULO : GENETICA GENERALE ED APPLICATA
ORE FRONTALI 50	ATTIVITA' DIDATTICHE FRONTALI OBIETTIVI SPECIFICI E PROGRAMMA
2 ore	Struttura degli acidi nucleici ed espressione genica: Struttura del DNA; trascrizione e traduzione.
8 ore	Struttura e funzione del cromosoma: Ploidia e ciclo cellulare, mitosi e meiosi, Crossing-over e sue anomalie: traslocazioni, delezioni, inversioni peri e paracentriche, crossing over ineguale, struttura dei cromosomi, metodi di studio dei cromosomi: Cariotipo, Bandeggio, FISH, CGH. Anomalie dei cromosomi: numeriche e strutturali.
6 ore	I geni nelle famiglie e nelle popolazioni: Eredità monogenica, leggi di Mendel, Valutazione del concetto mendeliano di "dominanza" e "recessività". Mendelismo ed esempi di eredità monofattoriale: sistema ABO, Rh, falcemia, daltonismo e favismo. Eredità associata al sesso. Talassemie e metodi di indagine delle talassemie

8 ore	Alberi genealogici, caratteri poligenici, quantitativi e multifattoriali Variabilità e Mutazione del genoma. Meccanismi molecolari di insorgenza
	e rilevanza biologica. Mutazioni e polimorfismi del DNA; Mutazioni geniche;
	Sequenze sensibili ("hot spot") alle mutazioni; Meccanismi d'insorgenza delle
	Mutazioni: Deaminazione ossidativa, (CpG), slippage, crossing-over ineguale; Mutazioni nei siti funzionalmente rilevanti del gene e loro effetti
	(promotore, sequenza codificante, siti di splicing sito di poliadenilazione),
	sequenze ripetute, meccanismi di insorgenza e mutagenesi delle sequenze
	ripetute; Sindromi dovute a amplificazioni di triplette. Mutazioni
	cromosomiche, genomiche e loro origine; Aneuploidie autosomali e sessuali
	specie umana (Sindromi di Down, Patau, Edwards, Turner, Klinefelter, Triplo
	X, XYY); Mutazioni "dinamiche" e patologie ereditarie (Sindrome dell' X
	fragile, Corea di Huntington, Atassia di Freidirich; Mosaicisno cromosomico.
	Mutazioni cromosomiche e tumori. La riparazione del DNA e sue correlazioni
	con patologie umane, con l'invecchiamento cellulare e con il cancro.
6 ore	Principi di Genetica formale e Genetica umana: Modelli di trasmissione di
	caratteri ereditari nella specie umana; Reincrocio ed analisi genetica in
	organismi modello: Pisello, lievito, neurospora. Modelli di trasmissione
	ereditaria autosomica ed associata al sesso.
	Il linkage, i caratteri associati. Il linkage disequilibrium. SNP e Aplotipo.
	Analisi dei polimorfismi del DNA (RFLP, VNTR, STR, SNP).
4 ore	Variabilità dell'espressione genica; Espressività e Penetranza,
	(retinoblastoma e Sindrome del Cromosoma X fragile), incidenza dei fattori
	ambientali, variazione continua e metodi statistici. LCR e HS40
5 ore	Genoma eucariotico, I Cromosomi; DNA nucleare e mitocondriale; Geni e
	quantità di DNA, Sequenze ripetute; Famiglie geniche (geni per le globine
	nell'uomo e geni omeotici in varie specie animali e la regolazione della loro
	espressione). Malattie genetiche del cavo orale: nevo bianco spongioso.
	Amelogenesi imperfecta, dentinogenesi imperfecta, schisi. Patologie
5 ore	genetiche sistemiche con manifestazioni nel cavo orale Metodi di analisi del gene, Endonucleasi di restrizione, funzione ed
5 016	applicazioni in medicina, RFLP; Identificazione delle mutazioni non su siti di
	restrizione, PCR, ibridazioni, ARMS, sequenziamento del DNA.
	Identificazione di delezioni e inserzioni
	de la
	1
10	ESERCITAZIONI
	Risorse bioinformatiche e loro uso in medicina, attività didattiche assistite
TESTI	Fasano, De Leo, Ginelli Edizioni edises
CONSIGLIATI	Tom Strachan, Andrew Read: Genetica molecolare umana
	Zanichelli