SCUOLA	Scienze di Base e Applicate
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA	Matematica
INSEGNAMENTO	Matematiche Complementari
TIPO DI ATTIVITÀ	Caratterizzanti
AMBITO DISCIPLINARE	Formazione teorica
CODICE INSEGNAMENTO	04909
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	MAT/04
DOCENTE RESPONSABILE	Cinzia Cerroni
(MODULO 1)	Ricercatore
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	153
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	72
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Geometria 1
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Dipartimento di Matematica e Informatica,
LEZIONI	Via Archirafi n. 34
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultabile al sito:
DIDATTICHE	http://www.scienze.unipa.it/matematica/mate/
ORARIO DI RICEVIMENTO DEGLI	A richiesta
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Conoscenza dei modelli di geometria non euclidea e sferica. Conoscere e classificare i gruppi di isometrie.

Capacità di applicare conoscenza e comprensione

Capacità di saper costruire i modelli di geometria non euclidea e sferica e di studiarne le proprietà. Saper costruire tassellazioni. Anche attraverso opportuni software di geonetria dinamica.

Autonomia di giudizio

Capacità di leggere autonomamente libri sulla materia, capacità di anche in lingua inglese.

Capacità di riconoscere i modelli di geometria non ecuclidea da loro rappresentazioni, capacità di riconoscere gruppi dalle tassellazioni su cui agiscono.

Abilità comunicative

Capacità di comunicare quanto appreso anche a non specialisti attraverso la descrizione dei modelli anche facendo uso di software.

Capacità d'apprendimento

Essere capace di scegliere autonomamente percorsi di apprendimento

Il raggiungimento degli obiettivi attesi è verificato attraverso la prova di esame.

OBIETTIVI FORMATIVI DEL CORSO Matematiche Complementari
Attraverso il corso di Matematiche Complementari gli studenti dovrebbero giungere a una adeguata conoscenza delle basi concettuali ed epistemologiche delle matematiche moderne

CORSO	Matematiche Complementari
ORE FRONTALI	LEZIONI FRONTALI
6	Complementi di Geometria Proiettiva
10	Modello di Beltrami Klein
5	Geometria Ellittica
10	Piano di Moebius
8	Geometria Sferica
8	Modello di Poincare'
14	Introduzione allo studio delle funzioni ellittiche
11	Sottogruppi del gruppo delle isometrie iperboliche
TESTI	Sernesi, Geometria I, Boringhieri, 2000
CONSIGLIATI	Schwerdtfeger, Geometry of Complex Numbers, Dover, 1980
	Jonas, Singerman, Complex Functions; An algebraic and geometric viewpoint, Cambridge
	University Press, 1987