FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2013-2014
CORSO DI LAUREA MAGISTRALE	Ingegneria Civile
INSEGNAMENTO	Meccanica Computazionale delle Strutture
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Civile
CODICE INSEGNAMENTO	09136
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ICAR/08
DOCENTE RESPONSABILE	Francesco Parrinello
	Ricercatore Confermato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Conoscenze di Scienza e Tecnica delle
	Costruzioni.
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Applicazioni software.
MODALITÀ DI FREQUENZA	Facoltativa
	(Fortemente Raccomandata)
METODI DI VALUTAZIONE	Esame Orale e Presentazione e discussione di un
	progetto strutturale eseguito con codice di
	calcolo.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedì, ore 10-13.
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del Corso avrà conoscenza delle problematiche inerenti il calcolo strutturale attraverso l'uso dei calcolatori; avrà conoscenza delle procedure matematiche che portano alla risoluzione del problema elastico per strutture intelaiate (metodo diretto delle rigidezze) e per sistemi continui (metodo degli elementi finiti). Sarà in grado di comprendere il funzionamento dei programmi di calcolo strutturale, di conoscerne i limiti e i campi di applicabilità.

Capacità di applicare, conoscenza e comprensione

Lo studente sarà in grado di applicare in modo critico i software di calcolo strutturali per l'analisi elastica delle più comuni tipologie di strutture, avrà adeguata conoscenza delle tipologie di problemi che si possono essere affrontare.

Autonomia di giudizio

Lo studente avrà la capacità di giudicare gli strumenti computazionali più adeguati alla risoluzione delle varie tipologie strutturali e delle diverse condizioni di carico, nonché la capacità di valutare se una soluzione approssimata è sufficientemente prossima a quella esatta.

Abilità comunicative

Lo studente avrà conoscenza della terminologia specifica della meccanica computazionale, capacità di esporre problematiche inerenti il calcolo strutturale e di collaborare alla realizzazione di progetti di calcolo realizzati in gruppo.

Capacità d'apprendimento

Lo studente avrà possibilità di apprendere importanti tematiche di base della meccanica computazionale e di conoscere ed utilizzare alcuni dei più importanti programmi di calcolo agli elementi finiti presenti in commercio.

OBIETTIVI FORMATIVI DEL MODULO

L'obbiettivo principale del corso è quello di fornire agli allievi le conoscenze teoriche basilari della meccanica computazionale e di consentire agli stessi la conoscenza diretta degli strumenti di calcolo agli elementi finiti, tramite la risoluzione in aula di un sufficiente numero di problemi di calcolo strutturale.

MODULO	MECCANICA COMPUTAZIONALE DELLE STRUTTURE
ORE FRONTALI	LEZIONI FRONTALI
2	A1. Metodo diretto delle rigidezze
	Idealizzazione e discretizzazione della struttura.
	Scomposizione in elementi finiti.
	Modellazione del singolo elemento finito.
	Trasformazione del sistema di riferimento.
	Assemblaggio, condizioni al contorno e risoluzione.
2	A2. Elementi finiti monodimensionali
	Costruzione dell'elemento asta per travature reticolari.
	Costruzione elemento trave a comportamento flessionale.
	Calcolo della matrice di rigidezza locale per la trave piana.
2	A3. Aspetti di carattere computazionale
	Assemblaggio del sistema di equazioni lineari.
	Condizioni al contorno.
	Numerazione ottimale dei nodi.
	Solutore a banda e solutore sparso.
2	B0. Metodo degli elementi finiti
	Equazioni di governo del problema elastico.
	Principio dei lavori virtuali primale e complementare.
	Metodi variazionali:
	- Funzionale energia potenziale totale.
	- Funzionale energia potenziale complementare.
	- Funzionale di Hellinger-Reissner.
	- Funzionale di Hu-Washizu.
4	B1. Risoluzione di problema monodimensionale
	Soluzione di tentativo.
	Formulazione interpolante e funzioni forma.
	Gradi di libertà nodali.
	Metodi di minimizzazione dell'errore.
	Metodo di Reylight-Ritz.
2	B2. Trave di Eulero-Bernulli
	Ipotesi cinematiche.
	Funzioni forma e gradi di libertà.
	Calcolo della matrice di rigidezza dell'elemento.
	Elementi con vincoli di estremità diversi dall'incastro.
2	B3. Trave di Timoshenko
	Ipotesi cinematiche.
	Area equivalente di taglio e coeff. di taglio.

	T
	Funzioni forma e gradi di libertà.
	Risoluzione e confronto con modello di Bernulli-Navier.
3	B4. Convergenza della soluzione
	Errore di approssimazione nel FEM.
	Convergenza della soluzione approssimata.
	Affinamento della soluzione: p e h refinement.
4	B5. Problemi piani
	Stato piano di tensione e di deformazione.
	Problema assialsimmetrico.
	Elementi finiti triangolari e rettangolari.
	Risoluzione di alcuni problemi piani.
5	B6. Elementi finiti isoparametrici
	Elemento reale e elemento naturale.
	Sistema di riferimento reale e sistema naturale.
	Mappatura tra i due elementi.
	Trasformazione di coordinate e jacobiano.
	Matrice di rigidezza dell'elemnto.
2	B7. Tecniche di integrazione numerica
	Metodi di integrazione approssimata.
	Metodo di Gauss.
	Punti di Gauss e relativi pesi.
	Errore di integrazione.
	Sottointegrazione.
2	B8. Elementi finiti di ordine superiore
	Funzioni forma quadratiche.
	Elemento triangolare a sei nodi.
	Elementi di serendipity.
	Elementi finiti a 9 nodi.
4	B9. Elementi finiti tipo piastra
	Teoria della piastra di Kirhoff e pistra di Mindlin.
	Elementi agli spostamenti: elemento triangolare di Kirkoff.
	Elementi misti.
	MODEL CARL GLOVA
	ESERCITAZIONI
2	Studio di un programma di calcolo agli elementi finiti sviluppato tramite foglio di calcolo
	elettronico.
2	Analisi di una struttura intelaiata con un codice di calcolo sviluppato su foglio elettronico.
2	Analisi di strutture intelaiate tramite un codice di calcolo commerciale.
2	Analisi di strutture intelaiate e introduzione di vincoli interni tramite rilassamento dei nodi e
2	tramite Vincolo Multigrado.
2	Analisi strutturale di problemi piani attraverso un programma di calcolo agli elementi finiti.
2	Analisi agli elementi finiti di un problema strutturale complesso.
12	Studio e analisi, da svolgere in piccoli gruppi di lavoro, del progetto strutturale di un opera di
TOWN COTTON	ingegneria civile, attraverso un programma di calcolo commerciale.
TESTI	• J- N. Reddy, An introduction to the finite element method, International student
CONSIGLIATI	edition.
	K. J. Bathe, Finite element Procedure, Prentice Hall, 1996
	• O.C. Zienkiewicz, R.L. Taylor, The finite element method , Butterworth Heinemann,
	2000