FACOLTÀ	Agraria
ANNO ACCADEMICO	2013/2014
CORSO DI LAUREA	Scienze e Tecnologie Agrarie
INSEGNAMENTO	Fisica
TIPO DI ATTIVITÀ	Base
AMBITO DISCIPLINARE	Matematica, Fisica, Informatica e Statistica
CODICE INSEGNAMENTO	03245
ARTICOLAZIONE IN MODULI	NO
SETTORE SCIENTIFICO DISCIPLINARE	Fis/01
DOCENTE RESPONSABILE	Lavinia Vaccaro
	Assegnista di ricerca
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Facoltà di Agraria
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali. Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova in itinere in forma scritta, prova finale
	scritta più un eventuale esame orale. In
	alternativa: prova scritta ed eventuale prova
	orale.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Vedi calendario lezioni
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Da concordare su appuntamento
STUDENTI	(lavinia.vaccaro@unipa.it)

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione degli strumenti basilari per affrontare e risolvere problemi di fisica. Capacita di utilizzare il linguaggio specifico di questa disciplina di base.

Capacità di applicare conoscenza e comprensione

Capacità di trasferire nella realtà operativa le conoscenze maturate per pervenire alla soluzione di problemi tecnici che emergono nell'ambito dell'attività professionale.

Autonomia di giudizio

Essere in grado di valutare in autonomia e con senso critico le implicazioni e i risultati dei problemi che risolve.

Abilità comunicative

Capacita di esporre i risultati degli esercizi svolti, anche ad un pubblico non esperto. Essere in grado di sostenere l'importanza ed evidenziare le ricadute applicative delle tematiche affrontate.

Capacità d'apprendimento

Conseguimento di una capacità di apprendimento che gli consente di intraprendere un percorso successivo di approfondimento e aggiornamento delle tematiche trattate. Le basi acquisite gli permettono di ampliare le conoscenze, con ricadute positive nel proprio ambito professionale.

OBIETTIVI FORMATIVI DELL'INSEGNAMENTO "FISICA"

La disciplina, a carattere propedeutico, sulla scorta delle conoscenze acquisite nel corso di matematica (trigonometria, studio di funzioni, derivate e integrali elementari), fornisce le informazioni fondamentali relative ai capitoli della meccanica classica (cinematica, dinamica, geometria delle masse), della termodinamica e dell'elettromagnetismo. La disciplina si propone di avvicinare lo studente alla risoluzione quantitativa di numerosi problemi pratici sui temi trattati e attinenti gli aspetti applicativi del settore forestale.

CORSO	FISICA
ORE FRONTALI	LEZIONI FRONTALI
2	Obiettivi del corso e sua suddivisione. Misura delle grandezze fisiche. Equazioni
_	dimensionali. Sistemi di unità di misura. Grandezze scalari e vettoriali.
4	Posizione. Velocità media ed istantanea. Accelerazione media ed istantanea. Moto rettilineo
·	uniforme. Moto rettilineo uniformemente accelerato. Moto vario. Rappresentazioni grafiche
	del moto unidimensionale. Operazioni sui vettori: somma di due vettori. Prodotto di un
	vettore per uno scalare. Differenza tra due vettori. Scomposizione di vettori. Prodotto scalare
	e vettoriale.
3	Moto in più dimensioni. Concetto di traiettoria. Accelerazione tangenziale e centripeta. Moto
	circolare uniforme e non. Velocità ed accelerazione angolare. Moto armonico. Composizione
	dei movimenti. Moto parabolico.
5	Principio di inerzia. Forze. Massa. Secondo principio della dinamica. Caduta dei gravi. Forze
	a distanza e forze di contatto. Forza peso. Reazioni vincolari. Funi e carrucole. Forza elastica.
	Forze di attrito. Terza legge della dinamica. Caduta dei gravi con attrito. Velocità terminale.
	Dinamica del moto circolare. Piano inclinato.
4	Lavoro di una forza. Potenza. Energia potenziale. Energia cinetica. Teorema dell'energia
	cinetica. Forze conservative e dissipative. Teorema di conservazione dell'energia meccanica.
	Quantità di moto. Impulso di una forza.
4	Dinamica dei sistemi. Sistemi isolati e conservazione della quantità di moto. Urti elastici ed
	anelastici. Centro di massa. Momento di una forza. Momento di inerzia. Seconda legge di
	Newton per il moto rotatorio. Energia cinetica rotazionale. Statica del corpo rigido. Cenni sul
	momento angolare.
2	Temperatura e termometro. Significato microscopico della temperatura. Equilibrio termico.
	Termologia. Principio zero della termodinamica e cenni sul terzo principio della
	termodinamica. Cambiamenti di stato. Calore latente. Dilatazione termica. Calore.
	Conduzione del calore. Legge di Fourier. Cenni su irraggiamento solare, legge di Plank,
	albedo. Umidità.
3	Gas perfetti. Equazione di stato dei gas perfetti. Lavoro di espansione e calore scambiato in
	un'arbitraria trasformazione quasi-statica di un gas perfetto. Trasformazioni isoterme,
	isocore, isobare, adiabatiche. Calore specifico a volume ed a pressione costante del gas
	perfetto.
3	Energia interna e primo principio della termodinamica. Grandezze di stato. Energia interna
	dei gas perfetti Trasformazioni reversibili ed irreversibili. Cicli termodinamici. Rendimento
	di un ciclo.
2	Macchine termiche. Ciclo di Carnot e teorema di Carnot. Secondo principio della
	Termodinamica: enunciati di Clausius e di Kelvin. Equivalenza dei due enunciati. Entropia.
	Legge di accrescimento dell'entropia.
3	Elettrostatica. Attrazione elettrostatica. Legge di Coulomb. Campo elettrico. Differenza di
	potenziale elettrico. Induzione elettrostatica e polarizzazione.
3	Moto di una carica sotto l'azione di un campo elettrico. Conduttori e dielettrici. Resistenza
	elettrica. Condensatori.
3	L'intensità di corrente. Circuito elettrico. Legge di Ohm. Energia e potenza elettrica.
	Resistenze in serie ed in parallelo. Leggi di Kirchhoff.
4	Cenni di elettromagnetismo: campo magnetico, correnti in un campo magnetico, forza di
	Lorentz. Natura della luce. Ottica geometrica. Riflessione e rifrazione. Specchi piani e sferici.
	Lenti sottili. Dispersione cromatica: prismi.
	ESERCITAZIONI
15	Esercizi svolti in aula.
TESTI	D. Halliday, R. Resnick, J. Walker, "Fondamenti di Fisica" (volume unico), Casa Editrice
CONSIGLIATI	Ambrosiana.
	JEWETT SERWAY Principi di Fisica Vol 1, Casa editrice Edises.
	Esercizi di riepilogo forniti dal docente.