FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2012/13
CORSO DI LAUREA MAGISTRALE	Ingegneria Elettronica
INSEGNAMENTO	Fotonica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Elettronica
CODICE INSEGNAMENTO	03543
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	-
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/01
DOCENTE RESPONSABILE	Claudio Calì
	Prof. ordinario
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	135
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	90
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	1°
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Esercitazioni in laboratorio.
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre, primo e secondo modulo
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Ogni giorno, dopo la lezione
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del Corso avrà una buona conoscenza del comportamento della radiazione luminosa e delle tecniche di generazione, manipolazione e rivelazione. Queste conoscenze renderanno capace lo studente di comprendere il meccanismo di funzionamento di tutti i dispositivi che trattano la radiazione ottica.

Capacità di applicare conoscenza e comprensione

Lo studente avrà acquisito conoscenze e metodologie per analizzare e risolvere problemi tipici del trattamento della radiazione luminosa sia nel campo delle comunicazioni sia in quello del trattamento dei materiali.

Autonomia di giudizio

Lo studente avrà acquisito competenze tali da essere in grado di analizzare situazione diverse ed esprimere giudizi sulla qualità delle soluzioni prospettate. Lo studente sarà inoltre in grado di individuare autonomamente soluzioni originali.

Abilità comunicative

Lo studente sarà in grado di comunicare con competenza e proprietà di linguaggio i problemi affrontati e le soluzioni affrontate o proposte.

Capacità d'apprendimento

Lo studente sarà in grado di affrontare in autonomia qualsiasi problematica relativa alla generazione, al trattamento ed alla rivelazione della radiazione luminosa. Sarà in grado di approfondire tematiche complesse.

OBIETTIVI FORMATIVI

Il corso fornisce le conoscenze di base ed alcuni strumenti essenziali allo studio dei meccanismi di funzionamento dei componenti, dei dispositivi e dei sistemi che utilizzano le frequenze ottiche. Il corso intende predisporre lo studente all'inserimento in attività professionali che richiedono una buona conoscenza di base dei dispositivi fotonici.

ORE FRONTALI	LEZIONI FRONTALI
1	Natura della luce
5	Ottica geometrica ed applicazioni
4	Rappresentazione matriciale dei raggi ed applicazioni ai risuonatori ottici
7	Fasci gaussiani
5	Ottica ondulatoria nei dielettrici
4	Rivelazione della radiazione luminosa
4	Reticoli di diffrazione
6	Risuonatore Fabry-Perot
2	Specchi dielettrici
13	Amplificazione e generazione della radiazione ottica coerente
5	Generazione degli impulsi ottici e tecniche di misura
9	Descrizione di alcuni laser
	ESERCITAZIONI
3	Ottica geometrica ed applicazioni
2	Rappresentazione matriciale dei raggi ed applicazioni ai risuonatori ottici
6	Fasci gaussiani
2	Reticoli di diffrazione
3	Risuonatore Fabry-Perot
1	Specchi dielettrici
4	Amplificazione e generazione della radiazione ottica coerente
2	Generazione degli impulsi ottici e tecniche di misura
2	Descrizione di alcuni laser
TESTI	Dispense del corso
CONSIGLIATI	A.Yariv, "Optical electronics", Holt, Rinehart and Winston.
	J. T. Verdeyen, "Laser Electronics" Prentice-Hall, Inc.
	M. Young, "Optics and Lasers", Springer-Verlag