FACOLTÀ	Scienze
ANNO ACCADEMICO	2013/2014
CORSO DI LAUREA	Informatica
INSEGNAMENTO	Algoritmi e Strutture Dati
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline Informatiche
CODICE INSEGNAMENTO	16670
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	INF/01
DOCENTE RESPONSABILE	Raffaele Giancarlo
	Professore Ordinario
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	153
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	72
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Analisi Matematica, Programmazione e
	Laboratorio C.I., Metodi matematici per
	l'informatica
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.cs.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali / Lezioni laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Prova Scritta, Prova Pratica
TIPO DI VIA VIEN GIONE	
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	II semestre
CALENDARIO DELLE ATTIVITÀ	Come da calendario disponibile presso
DIDATTICHE	www.cs.unipa.it
ORARIO DI RICEVIMENTO DEGLI	Martedì e Giovedì
STUDENTI	Ore 15:00-17:00

OBIETTIVI FORMATIVI DEL CORSO

Esporre lo studente a tecniche fondamentali di progetto ed analisi di algoritmi. In particolare, si copre tutto lo spettro delle strutture dati fondamentali e dei principali paradigmi algoritmici, con cenni allo studio di complessità computazionale di problemi intrattabili. Si trattano anche aspetti ingegneristici fondamentali per l'implementazione di algoritmi efficienti.

ORE	LEZIONI FRONTALI
2	NOZIONI INTRODUTTIVE
	Algoritmi e Strutture Dati. Nozioni introduttive per la soluzione algoritmica di
	un problema, diverse soluzioni per uno stesso problema. Il problema
	dell'efficienza di un algoritmo.

6	TECNICHE EMPIRICHE E MATEMATICHE PER L'ANALISI DI
	ALGORITMI
	Analisi degli algoritmi. Velocità di crescita delle funzioni. Ricorrenze
	Fondamentali. Soluzioni delle equazioni di ricorrenza. Metodo dell'iterazione
	e Master Theorem.
4	MODELLI di CALCOLO, COMPLESSITA' COMPUTAZIONALE E
	ALGORITMI
	Random Access Machines, Complessità Computazionale RAM, Macchine di
	Turing e relazione fra esse (linee generali).
3	ALGORITMI DI ORDINAMENTO
	Lower bound per gli algoritmi di ordinamento: caso pessimo e caso medio.
	Principali algoritmi di sorting
10	PARADIGMI PER IL PROGETTO DI ALGORITMI EFFICIENTI
	Divide et Conquer, Programmazioni Dinamica, Tecniche Greedy. Esempi:
	Ricerca Minimo e Massimo, Moltiplicazione d'interi, Moltiplicazione di
	Matrici; Mergesort; Il Quicksort. Analisi worst case e analisi caso medio.
	Prodotto di n matrici. Longest Common Subsequence, Riconoscimento
	Grammatiche Context Free. Algoritmi Greedy: Optimal Storage on Tapes. Il
	Problema dello Zaino (versione "greedy")
10	STRUTTURE DATI AVANZATE ED OPERAZIONI SU INSIEMI
	Operazioni Fondamentali su Insiemi. Tabelle Hash. Union-find. Alberi di
	Ricerca Ottimi, Schemi di Alberi Bilanciati, Dizionari e Code a Priorità,
	Mergeable Heaps, Code Concatenabili.
10	ALGORITMI SU GRAFI
	Rappresentazione di Grafi, Visite su Grafi, Biconnettività e Connettività Forte,
	Algoritmi di Spanning Tree Minimo, Algoritmi per Cammini Ottimi.
3	TEORIA DELL' NP- COMPLETEZZA
	Macchine di Turing Non Deterministiche. Cenni sulle Classi P NP ed NP
	Completi.

	LEZIONI DI LABORATORIO ED ESERCITAZIONI
1	STRUTTURE DATI ELEMENTARI IN C (Riepilogo da
	Programmazione)
	Array, liste concatenate, stringhe e loro implementazione in C: Riepilogo da
	Programmazione
3	STRUTTURE DATI ASTRATTE IN C
	Pile, Code e loro implementazione in C mediante array e liste concatenate.
	Valutazione di un'espressione in forma postfissa mediante una pila e sua
	implementazione in C.
7	ALGORITMI DI SORTING IN C
	Implementazione di algoritmi di sorting in C
8	PARADIGMI DI PROGETTO DI ALGORITMI IN C
	Ricorsione. Divide et Impera: ricerca del minimo e del massimo, ricerca
	binaria e loro implementazione in C. Programmazione Dinamica: Distanza di
	Edit fra due stringhe. La massima sottosequenza comune.
5	GRAFI ED ALBERI
	Strutture dati per la rappresentazione di grafi ed alberi in C. Algoritmi di visita

R. Sedgevick – Algoritmi in C, Addison-Wesley.	
T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein - Introduzione agli Algoritmi e strutture dati, McGraw Hill.	
A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison Wesley. C. Demetrescu, I. Finocchi, G.F. Italiano, Algoritmi e Strutture Dati, McGraw-Hill.	

su alberi. Visita DFS e BFS.

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione degli strumenti di base per l'analisi ed il progetto di algoritmi. Capacità di utilizzare il linguaggio specifico proprio della disciplina.

Capacità di applicare conoscenza e comprensione

Capacità di sviluppare software basati su algoritmi efficienti per problemi elementari

Autonomia di giudizio

Essere in grado di valutare le implicazioni e i risultati degli studi algoritmici che segue e della complessità computazionale dei problemi ad essi associati.

Abilità comunicative

Capacità di esporre i risultati salienti degli studi algoritmici, anche ad un pubblico non esperto. Essere in grado di evidenziare le ricadute tecnologiche delle teorie studiate.

Capacità d'apprendimento

Capacità di aggiornamento con la consultazione di testi avanzati e pubblicazioni scientifiche propri del settore dell'algoritmica. Capacità di seguire, utilizzando le conoscenze acquisite nel corso, sia corsi di master di primo livello, che corsi di laurea magistrali.