FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2013-2014
CORSO DI LAUREA	Ingegneria Elettrica
INSEGNAMENTO	Macchine Elettriche
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Elettrica
CODICE INSEGNAMENTO	Ingegneria Elettrea
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/32
DOCENTE RESPONSABILE	Antonino Oscar Di Tommaso
DOCENTE REDUCTIONED	Ricercatore
	Università degli Studi di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	48
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	72
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Matematica I, Fisica I e II o Fisica Generale,
	Principi di Ingegneria Elettrica, Misure
	Elettriche
ANNO DI CORSO	2°
SEDE DI SVOLGIMENTO DELLE LEZIONI	Polo Didattico di Caltanissetta
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Esercitazioni in laboratorio, Visite
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale, Presentazione delle esercitazioni
	sotto forma di relazioni tecniche
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Si riferiscono all'insegnamento e non ai singoli moduli che lo compongono.

Vanno espressi utilizzando i descrittori di Dublino

Conoscenza e capacità di comprensione

Lo studente al termine del Corso avrà conoscenza del principio di funzionamento fisico, dei modelli matematici, delle problematiche di controllo e regolazione e, infine, delle problematiche costruttive relativamente alle macchine elettriche fondamentali. In particolare lo studente sarà in grado di scegliere e di dimensionare, in base alle specifiche esigenze, le macchine elettriche nell'ambito dei sistemi elettrici per l'energia, degli impianti industriali automatizzati e dei sistemi elettrici per l'automazione. Lo studente sarà cosciente di alcuni temi d'avanguardia nel campo delle macchine elettriche.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di utilizzare gli strumenti della matematica, della fisica e dell'ingegneria per lo studio, il dimensionamento, la progettazione, la realizzazione e l'installazione delle macchine elettriche; saprà porre e sostenere argomentazioni inerenti lo studio, l'applicazione, la messa in

esercizio delle macchine elettriche.

Autonomia di giudizio

Lo studente sarà in grado di conoscere e di interpretare i principali dati e parametri elettromeccanici delle macchine elettriche; sarà in grado di raccogliere i dati necessari sia per effettuare il corretto dimensionamento di una macchina elettrica sia per interpretarne il funzionamento sia, ancora, per valutarne il corretto funzionamento durante l'esercizio.

Abilità comunicative

Lo studente acquisirà la capacità di comunicare informazioni e idee ed esprimere problematiche inerenti l'oggetto del corso. Sarà in grado di sostenere conversazioni su tematiche riguardanti le macchine elettriche, di evidenziare problemi relativi alla collocazione di esse nell'ambito di sistemi elettrici e di offrire soluzioni adeguate.

Capacità d'apprendimento

Lo studente avrà appreso le interazioni tra le varie tematiche e tra le fondamentali discipline dell'ingegneria elettrica affrontate durante il corso e ciò gli consentirà di proseguire gli studi ingegneristici con maggiore autonomia e con maggiore capacità critica.

OBIETTIVI FORMATIVI DEL MODULO

Conoscenza del principio di funzionamento, della modalità di funzionamento e di costruzione dei trasformatori e delle macchine sincrone.

Conoscenza del principio di funzionamento, della modalità di funzionamento e di costruzione delle macchine a induzione e delle macchine in corrente continua.

MODULO I	DENOMINAZIONE DEL MODULO: Macchine Elettriche I	
ORE FRONTALI	LEZIONI FRONTALI	
2	Introduzione alle macchine elettriche	
4	Nozioni elementari sui materiali magnetici, conduttori e isolanti per le macchine elettriche	
4	Principio di funzionamento del trasformatore	
4	Modello matematico del trasformatore ai valori istantanei e in regime sinusoidale	
4	Messa in parallelo dei trasformatori	
4	Principio di funzionamento della macchina sincrona	
4	Modelli matematici della macchina sincrona in regime sinusoidale con struttura magnetica	
	lineare e non lineare	
2	Curve caratteristiche delle macchine sincrone	
1	Messa in parallelo dei un alternatore su una rete a potenza prevalente	
4	Motori sincroni	
4	Stabilità dei motori e dei generatori sincroni	
2	Principio di funzionamento della macchina ad induzione	
2	Caratteristiche costruttive dei motori ad induzione	
3	Modello matematico in regime sinusoidale del motore ad induzione	
2	Stabilità dei motori ad induzione	
4	Principio di funzionamento della macchina a corrente continua	
4	Dinamo	
4	Avvolgimenti delle macchine in corrente continua	
4	Motore in corrente continua	
2	Macchine elettriche speciali	
	ESERCITAZIONI	
10	Esercitazioni numeriche sui trasformatori e sugli alternatori. Prova a vuoto e in corto circuito	
	dei trasformatori.	
TESTI CONSIGLIAT		
	S. Crepaz, Macchine Elettriche, CLUP, Milano.	
	M. Perez de Vera, <i>Macchine elettriche</i> (Vol. I e II), Liguori, Napoli.	
	M. Andriollo, G. Martinelli, A. Morini: "I Trasformatori. Esercizi con elementi di teoria +	
	Macchine elettriche rotanti. Teoria ed esercizi" Libreria Cortina. Padova.	