FACOLTÀ	INGEGNERIA
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA	Ingegneria Informatica e delle
	Telecomunicazioni
	Classe L-8 – Lauree in Ingegneria
	dell'informazione
INSEGNAMENTO	Elaborazione numerica dei segnali
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Ingegneria delle telecomunicazioni
CODICE INSEGNAMENTO	02827
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/03
DOCENTE RESPONSABILE	Matteo CAMPANELLA
	Professore Ordinario
	Università degli Studi di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Prova Scritta
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Dal Lunedì al Venerdì, in mattinata
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del Corso avrà acquisito la conoscenza delle principali tecniche di elaborazione numerica dei segnali, con particolare riguardo alle tecniche di trasformazione e di filtraggio dei segnali. Tali conoscenze lo metteranno in grado di comprendere il ruolo di ciascuno degli algoritmi di base all'interno di un sistema di elaborazione numerica, nonché l'impatto degli errori di approssimazione numerica sulle prestazioni complessive del sistema.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di applicare le conoscenze acquisite a problemi di progettazione di sistemi di elaborazione numerica, con particolare riguardo ai filtri numerici; potrà inoltre applicare tali conoscenze alla valutazione, per ciascuna soluzione, di parametri quali la complessità computazionale, i requisiti di memoria e la qualità del progetto in relazione ai risultati ottenuti rispetto alle specifiche desiderate.

Autonomia di giudizio

Lo studente sarà in grado di giudicare e mettere a confronto fra loro più soluzioni di uno stesso problema sulla base di valutazioni quantitative delle principali caratteristiche di ciascuna soluzione.

Abilità comunicative

Lo studente sarà in grado di comunicare con chiarezza problemi e soluzioni relative alle tematiche dell'elaborazione numerica di segnali e di partecipare attivamente a conversazioni riguardanti tale disciplina.

Capacità d'apprendimento

Le conoscenze acquisite consentiranno allo studente di approfondire autonomamente argomenti riguardanti la disciplina, nonché di proseguire gli studi ingegneristici.

OBIETTIVI FORMATIVI DEL MODULO

I principali obiettivi formativi del corso consistono nell'acquisizione, da parte dello studente, di metodi e tecniche per la rappresentazione di segnali a tempo discreto per l'elaborazione degli stessi, con particolare riguardo al filtraggio numerico ed agli algoritmi di FFT e di convoluzione veloce. Lo studente sarà altresì in grado di valutare gli effetti della precisione finita dell'aritmetica sulle prestazioni di un sistema di elaborazione numerica.

ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione al corso: obiettivi fondamentali dell'elaborazione n umerica dei segnali
12	Segnali a tempo discreto e relative tecniche di analisi: trasformata di Fourier dei segnali a tempo discreto, trasformata zeta e sue proprietà fondamentali, segnali a tempo discreto periodici e di durata finita, DFT e sue proprietà fondamentali, relazioni tra DFT, trasformata di Fourier e trasformata zeta per segnali a durata limitata, convoluzione lineare e convoluzione ciclica e relazioni tra loro sussistenti, tecniche di trasformazione e antitrasformazione
12	Sistemi a tempo discreto e relative tecniche di analisi: sistemi a tempo discreto descritti mediante relazioni ingresso-uscita, sistemi lineari, stabili, causali, tempo invarianti, risposta impulsiva e funzione di trasferimento, sistemi FIR e IIR, rappresentazione di un sistema mediante grafo di flusso dei segnali, realizzazioni canoniche, studio comparativo delle varie realizzazioni canoniche.
6	Tecniche di trasformata di Fourier veloce (FFT) e di convoluzione veloce: FFT a radice 2, a decimazione di tempo e di frequenza, FFT a radice composta, metodi di involuzione veloce ("overlap and sum" e " overlap and save")
7	Progettazione di filtri IIR: trasferimento delle specifiche di un filtro analogico in quelle di una realizzazione mediante filtro numerico, schemi di tolleranze tipici (filtro passa-basso, passa-banda etc.), problemi di approssimazione, metodi dell'invarianza all'impulso e della trasformazione bilineare, approssimazioni di Butterworth e di Chebyshev, corrispondenti tecniche di progettazione, trasformazioni di frequenza.
6	Progettazione di filtri FIR: filtri a fase lineare, proprietà della risposta impulsiva e della funzione di trasferimento, progettazione di un filtro FIR

	mediante il metodo delle finestre, progettazione di un filtro FIR a fase lineare
	mediante il metodo del campionamento in frequenza, riduzione a un problema
	di programmazione lineare, cenni si metodi di progettazione ottima.
6	Effetti della quantizzazione e della precisione finita dell'aritmetica: errore di
	quantizzazione, rappresentazioni in virgola fissa e mobile, analisi statistica
	degli errori, esempi di instauraziuone di cicli limite.
	ESERCITAZIONI E LABORATORIO
10	Esercitazioni teorico/numeriche e di laboratorio sugli argomenti svolti nel
	corso.
TESTI CONSIGLIATI	 Oppenheim A.V. – Schafer R.W.: Elaborazione numerica dei segnali. Rabiner L.R. – Gold B.: Theory and application of digital signl processing. Ed. Prentice-Hall.