FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2013/2014
CORSO DI LAUREA	Scienze della Natura e dell'Ambiente
	Curriculum Ambientali
INSEGNAMENTO	Chimica Fisica
TIPO DI ATTIVITÀ	base
AMBITO DISCIPLINARE	Discipline Chimiche
CODICE INSEGNAMENTO	01874
ARTICOLAZIONE IN MODULI	no
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/02
DOCENTE RESPONSABILE	Carmelo Sbriziolo
	Professore associato
	Università degli studi di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO DELLE	Vedi Calendario didattico a.a. 2013/2014 sul
LEZIONI	sito del corso di laurea
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta e Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	
CALENDARIO DELLE ATTIVITÀ	Vedi Calendario didattico a.a. 2013/2014 sul
DIDATTICHE	sito del corso di laurea
ORARIO DI RICEVIMENTO DEGLI	Martedì 9,00- 11,00
STUDENTI	Giovedì 9,00- 11,00

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione dei concetti fondamentali della Chimica fisica da utilizzare come chiave interpretativa dei processi chimici

Capacità di applicare conoscenza e comprensione

Conoscere i concetti, le tecniche e le metodologie chimico-fisiche per descrivere il comportamento dei sistemi reali

Autonomia di giudizio

Capacità di valutazione critica delle implicazioni chimico-fisiche relative a semplici problematiche nell'ambito delle scienze ambientali.

Abilità comunicative

Capacità di comunicare efficacemente, in forma scritta e orale, con linguaggio scientifico e in termini rigorosi sui concetti acquisiti.

Capacità d'apprendimento

Capacità di analisi, interpretazione, catalogazione e rielaborazione critica dei concetti fondamentali acquisiti durante il corso.

OBIETTIVI FORMATIVI

Obiettivo del corso è di fornire una conoscenza approfondita degli aspetti teorici, sperimentali ed applicativi della chimica fisica, contribuendo in tal modo a fornire una solida base in chimica che consenta al laureato di svolgere attività lavorative nell'ambito delle Scienze ambientali

	Chimica Fisica
48 ORE FRONTALI	LEZIONI FRONTALI
2	0.Introduzione
	0.1 Requisiti e finalità del corso
	0.2 La materia e l'energia
	0.3 Le trasformazioni della materia e l'energia
3	1.Le leggi dei gas (Richiami)
	1.1 Stati di aggregazione
	1.2 Gas ideali e loro equazione di stato
	1.3 Leggi di Boyle, Charles, Gay-Lussac e di Avogadro
	1.4 Pressioni parziali
	1.5 Gas reali ed equazioni di stato do di Van der Waals
10	2.I principio della termodinamica
	2.1 Definizioni
	2.1.1 Sistema, ambiente ed universo
	2.1.2 Sistema chiuso, aperto ed isolato
	2.1.3 Funzioni di stato e di percorso
	2.1.4 Energia interna
	2.1.5 Lavoro
	2.1.6 Calore
	2.2 Variazioni dell'energia interna
	2.3 Capacità termiche
	2.4 Entalpia
	2.5 Trasformazioni di gas ideali
4	3. Termochimica
	3.1 Entalpia di reazione
	3.2 Legge di Hess
	3.3 Entalpia standard di reazione
	3.4 Entalpia standard di formazione
	3.5 Legge di Kirchhoff
	3.6 Entalpia di legame
5	4. II principio della termodinamica
	4.1 Spontaneità di un processo e probabilità
	4.2 Cenni su definizione statistica dell'entropia
	4.3 Entropia e grandezze termodinamiche
	4.4 Esseri viventi ed entropia
	4.5 Calcolo della variazione di entropia per alcune trasformazioni e sua
	dipendenza dalla
	temperatura
5	5. Energia libera
	5.1 Criteri termodinamici di equilibrio
	5.2 Energia di Gibbs
	5.3 Energia libera standard
	5.4 Equilibri di fase
	5.5 Equazione di Clapeyron e di Clausius-Clapeyron

	5.6 Diagrammi di fase e regola delle fasi
4	6. Potenziale chimico
	6.1 Grandezze parziali molari
	6.2 Potenziale chimico
	6.3 Energia libera, entropia ed entalpia di mescolamento
	6.4 Proprietà colligative: aspetti termodinamici
4	7. Equilibrio chimico
	7.1 Stato di equilibrio ed equilibrio dinamico
	7.2 Costanti di equilibrio e relazioni con la variazione di energia di Gibbs
	7.3 Sistemi ideali e sistemi reali
	7.4 Fugacità ed attività
	7.6 Dipendenza della costante di equilibrio dalla temperatura
5	8. Cinetica chimica
	8.1 Meccanismo e velocità delle reazioni chimiche
	8.2 Velocità di reazione e ordini di reazione
	8.3 Leggi cinetiche e leggi integrate
	8.4 Equazione di Arrhenius
	8.5 Teoria dello stato di transizione
	8.6 Catalisi
6	9. Elettrochimica
	9.1 La spontaneità delle reazioni redox
	9.3 Aspetti termodinamici delle reazioni redox
	9.2 Celle elettrochimiche
	9.3 La forza elettromotrice di una pila
	9.4 La costante di equilibrio di una reazione redox
	9.5 L'elettrolisi
	9.6 Le leggi di Faraday
	9.7 Tensione di decomposizione e sovratensione
TESTI	P.W. Atkins, <i>Elementi</i> di <i>Chimica Fisica</i> , Zanichelli, 2004
CONSIGLIATI	R. Chang, <i>Chimica Fisica 1</i> , Zanichelli, 2004