STRUTTURA	Scuola Politecnica - DEIM
ANNO ACCADEMICO	2014- 2015
CORSO DI LAUREA	Ingegneria Elettronica
INSEGNAMENTO	Fisica I
TIPO DI ATTIVITÀ	Di base
AMBITO DISCIPLINARE	Fisica e chimica
CODICE INSEGNAMENTO	03295
ARTICOLAZIONE IN MODULI	no
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	FIS/03
DOCENTE RESPONSABILE	Francesca Morales
	Professore Associato
	Università di Palermo
CFU	12
NUMERO DI ORE RISERVATE ALLO	192
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	108
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta e Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Consultare il sito politecnica.unipa.it
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

• Lo studente al termine del Corso comprenderà il significato delle leggi della Fisica e delle variabili necessarie per costruire un modello fisico. In particolare lo studente conoscerà: i principi della dinamica; i principi di conservazione dell'energia, della quantità di moto e del momento angolare; il concetto di campo; le leggi di Maxwell dell'elettromagnetismo. Lo studente avrà inoltre conoscenza dei legami tra la microfisica e la macrofisica.

Capacità di applicare conoscenza e comprensione

• Lo studente sarà in grado di utilizzare le leggi della Fisica e gli strumenti matematici per risolvere semplici problemi di meccanica e di elettromagnetismo utilizzando argomenti di simmetria, il principio di sovrapposizione ed i principi di conservazione. Conoscerà la validità e i limiti delle leggi e dei modelli usati.

Autonomia di giudizio

• Lo studente sarà in grado di individuare le variabili necessarie per la descrizione di un

modello físico, che verrà costruito attraverso l'osservazione, la schematizzazione, la previsione e la verifica sperimentale. Avrà la capacità di effettuare stime e calcoli numerici.

Abilità comunicative

• Lo studente acquisirà la capacità di comunicare ed esprimere problematiche inerenti l'oggetto del corso. Sarò in grado di utilizzare i principi e le leggi della fisica studiati in applicazioni concrete.

Capacità d'apprendimento

• Lo studente avrà acquisito la capacità di individuare nella molteplicità dei fenomeni naturali i principi fondamentali della fisica, a descrivere i fenomeni fisici e a modellizzarli; avrà imparato a formalizzare matematicamente un problema e risolverlo. Questo gli consentirà di proseguire gli studi di ingegneria con maggiore autonomia ed discernimento.

OBIETTIVI FORMATIVI

- Lo studente al termine del Corso comprenderà il significato delle leggi della fisica e delle variabili necessarie per costruire un modello fisico. In particolare lo studente conoscerà: i principi della dinamica; i principi di conservazione dell'energia, della quantità di moto e del momento angolare; le leggi fondamentali dell'elettromagnetismo; i legami tra la fisica macroscopica e la fisica microscopica.
- Lo studente acquisirà la capacità di applicare i principi e le leggi della fisica a situazioni concrete di interesse per l'ingegneria.

	Fisica I	
ORE FRONTALI	LEZIONI FRONTALI	
8	Cinematica del punto materiale e moti relativi	
8	Dinamica del punto materiale, urti e oscillazioni	
8	I principi di conservazione dell'energia e della quantità di moto.	
4	Dinamica rotazionale e principio di conservazione del momento angolare.	
6	Elettrostatica: Legge di Coulomb. Campo Elettrico e Potenziale. Teorema di Gauss.	
4	Energia del campo elettrostatico. Dipolo elettrico. Condensatori e dielettrici.	
2	Circuiti in corrente continua, circuiti RC.	
8	Magnetismo: campo magnetico, forza di Lorentz, teorema di Ampere. Energia del campo magnetico. Cenni sul magnetismo nella materia. Circuiti RL.	
8	Induzione elettromagnetica: Legge di Faraday-Lenz.	
4	Equazioni di Maxwell.	
	ESERCITAZIONI	
6	Cinematica del punto materiale e moti relativi.	
7	Dinamica del punto materiale, urti e oscillazioni.	
7	I principi di conservazione dell'energia e della quantità di moto.	
3	Dinamica rotazionale e principio di conservazione del momento angolare.	
5	Elettrostatica: Legge di Coulomb. Campo Elettrico e Potenziale. Teorema di Gauss.	
4	Energia del campo elettrostatico. Dipolo elettrico. Condensatori e dielettrici.	
6	Magnetismo: campo magnetico, forza di Lorentz, teorema di Ampere. Energia del campo magnetico.	
6	Induzione elettromagnetica: Legge di Faraday-Lenz.	

4	Equazioni di Maxwell.

TESTI	 P. Mazzoldi, M. Nigro, C. Voci - Elementi di Fisica
CONSIGLIATI • H	Meccanica e Termodinamica
	II Ed. EdiSes.
	• P. Mazzoldi, M. Nigro, C. Voci - Elementi di Fisica
	Elettromagnetismo
	II Ed. EdiSes.
	 Serway, Jewett Fisica per Scienze ed Ingegneria
	Vol. I e II
	IV Ed. EdiSes.
	• P. Mazzoldi, M. Nigro, C. Voci Problemi di Fisica Generale
	Meccanica – Termodinamica
	Edizioni Libreria Cortina, Padova.
	• P. Mazzoldi, M. Nigro, C. Voci Problemi di Fisica Generale
	Elettromagnetismo
	Edizioni Libreria Cortina, Padova.