FACOLTÀ	Scienze MM.FF.NN
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA	Chimica
INSEGNAMENTO	Metodi Computazionali di Base per la Chimica
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	16160
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/02
DOCENTE RESPONSABILE	Lo Celso Fabrizio
(MODULO 1)	Ricercatore
	Università degli Studi di Palermo
CFU	4+2
NUMERO DI ORE RISERVATE ALLO	94
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	56
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Aula C ed.17
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	Prova Scritta
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Secondo calendario delle lezioni pubblicato
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Mar 15-17 Giov 15-17
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Conoscenza dei metodi di base matematici per l'analisi degli errori e per adattamento di dati sperimentali a modelli.

Capacità di applicare conoscenza e comprensione

Capacità di applicare i metodi di base matematici per l'analisi degli errori e per adattamento di dati sperimentali a modelli sulla base di esercitazioni numeriche e programmazione al computer.

Autonomia di giudizio

Valutare autonomamente la scelta del metodo e dell'ambito applicativo della teoria degli erori per problemi relativi all'ambito chimico fisico

Abilità comunicative

Capacità di saper comunicare in modo chiaro e univoco la scelta del metodo per il trattamento dei dati sperimentali e i relativi passaggi matematici per giustificare le conclusioni .

Capacità d'apprendimento

Avere sviluppato le capacità di apprendimento che consentono di affrontare autonomamente, di comprendere e trattare problemi non esplicitamente trattati durante il corso con particolare riferimento all'uso di software numerico di uso comune.

OBIETTIVI FORMATIVI DEL MODULO

L'obiettivo del corso è quello di fornire gli elementi necessari per la comprensione della teoria dell'analisi degli errori, di metodi matematici di base per il trattamento di dati sperimentali, per l'utilizzo di software di uso comune in ambito matematico.

MODULO	METODI DI BASE COMPUTAZIONALI PER LA CHIMICA	
ORE FRONTALI	LEZIONI FRONTALI	
4	Misura di una grandezza fisica. Incertezza. Cifre significative. Arrotondamento.	
	Operazioni tra numeri approssimati. Discrepanza. Incertezza relativa. Notazioni per	
	esprimere l'incertezza. Propagazione delle incertezze: errore max per somma e	
	differenza; errore max per moltiplicazione; errore max per quoziente.	
4	Analisi statistica delle incertezze. Errori casuali e sistematici. Definizione di media e	
	deviazione standard. La misura come evento casuale. Istogramma; distribuzione	
	limite. Distribuzione gaussiana. Parametri della distribuzione gaussiana.	
	Giustificazione di media e deviazione standard come determinazioni più probabili dei	
	parametri della distribuzione normale. Distribuzioni derivate: x+A, Bx, x+y, f(x,y).	
	Calcolo della probabilità di un risultato in un intervallo di valori. Funzione erf(t).	
4	Fitting lineare. Determinazione dei parametri fitting lineare tramite minimizzazione	
	del χ^2 . Calcolo dell'errore sui parametri. Probabilità di un valore di indice di	
	correlazione lineare.	
4	Distribuzione binomiale. Media e deviazione standard per la distribuzione binomiale.	
	Distribuzione di Poisson. Media e deviazione standard per la distribuzione di	
	Poisson.	
4	Test Chi quadro	
4	Gnuplot: software open source per il trattamento dei dati sperimentali	
2	Elementi di informatica di base	
6	Elementi di programmazione Fortran 77	
	ESERCITAZIONI	
24	Esercitazioni numeriche sugli argomenti affrontati nelle lezioni frontali	
TESTI	J. R. Taylor. Introduzione all'analisi degli errori. Zanichelli, Bologna, 2006.	
CONSIGLIATI		