STRUTTURA	Scuola Politecnica - DICGIM
ANNO ACCADEMICO	2014-15
CORSO DI LAUREA MAGISTRALE	Ingegneria Meccanica
INSEGNAMENTO	Elettronica
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	09079
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/01
DOCENTE RESPONSABILE	Patrizia Livreri
	Ricercatore confermato
	Università degli Studi di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Matematica I, Matematica II, Fisica I e II,
	Geometria,
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Esercitazioni in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta e Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni al di fuori dell'orario delle lezioni
STUDENTI	previo appuntamento telefonico o per e-mail

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

L'allievo, al termine del corso, avrà acquisito conoscenze e capacità di comprensione su:

- caratteristiche fondamentali e principio di funzionamento dei dispositivi elettronici di più comune impiego;
- funzionamento dei circuiti elettronici di più comune impiego nelle applicazioni tipiche dei sistemi automatizzati
- l'utilizzo dei sistemi elettronici nelle comunicazioni;
- comprenderà i principi fisici e la fisica matematica utile alla comprensione dei fenomeni elettronici;
- avrà una visione sistematica del circuito elettronico;
- sarà consapevole del contesto scientifico multidisciplinare che abbracci i settori dell'Ingegneria dell'Informazione e dell'Ingegneria Industriale.

.

Capacità di applicare conoscenza e comprensione

L'allievo, al termine del corso, sarà in grado di:

- identificare, formulare e analizzare le problematiche fondamentali connesse con l'impiego dei circuiti elettronici e dei convertitori elettronici, utilizzando metodi, tecniche e strumenti aggiornati.
- comprendere i fenomeni, i circuiti ed i sistemi Elettronici
- conoscere le grandezze fisiche e la terminologia dell'Elettronica
- comprendere l'utilizzo dei circuiti elettronici nell'aeronautica e nell'automotive

Autonomia di giudizio

L'allievo avrà acquisito l'autonomia necessaria per impiegare correttamente i circuiti elettronici elementari ed i convertitori elettronici.

Abilità comunicative

• Lo studente sarà in grado di: acquisire la capacità di comunicare ed esprimere problematiche inerenti l'elettronica; conoscere le grandezze fisiche e la terminologia dell'Elettronica; di sostenere conversazioni su tematiche attuali che riguardano i circuiti elettronici; di discorrere con competenza su tematiche legate all'elettronica anche con non addetti ai lavori.

Capacità d'apprendimento

L'allievo sarà in grado di:

- affrontare lo studio dei sistemi elettronici;
- riconoscere la necessità dell'apprendimento autonomo durante tutto l'arco della vita;
- effettuare ricerche bibliografiche in maniera autonoma sui sistemi elettronici;
- di leggere in maniera autonoma un testo specialistico e di comprenderlo;
- di seguire seminari e workshop di elettronica e comprendere le relazioni orali e gli atti pubblicati.

OBIETTIVI FORMATIVI

Analisi del sistema elettronico complesso e la sua ripartizione in moduli funzionali. Vengono descritte funzione, realizzazione e caratteristiche di interfaccia dei vari sottomoduli. Il corso comprende anche le nozioni fondamentali relative alla strumentazione e alle misure elettroniche.

ORE LEZIONI	LEZIONI FRONTALI E ESERCITAZIONI
FRONTALI/	
ESERCITAZION	
I	
5/2	Sistema elettronico e sua funzione di trasferimento, concetto di segnale e
	sua rappresentazione nel tempo e in frequenza. Analisi e descrizione di un
	circuito tramite trasformate di Laplace e rappresentazione tramite diagramma
	di Bode.
5/2	Identificazione dei blocchi di amplificazione e condizionamento del segnale,
	parametri caratteristici, modelli, specifiche di progetto, limiti del modello
	(distorsione, rumore, offset, etc.).
5/2	Dispositivi per condizionamento e amplificazione basati su semiconduttore.
	Diodi e circuiti a diodo, transistori MOS e BJT e loro applicazione come
	dispositivi per amplificazione e commutazione.
5/2	Principio della reazione negativa, uso dell'amplificatore operazionale per

	realizzare amplificatori. Configurazione dell'amplificatore basato su OP-
	AMP di tipo invertente, e non invertente; amplificatore da strumentazione,
	comparatore di soglia. Caratteristiche dell'operazionale reale.
5/2	Circuiti per le applicazioni logiche: introduzione all'elettronica dei sistemi
	logici, famiglie logiche e loro proprietà (interfacciamento, tempistiche
	e potenza dissipata), logiche combinatorie (sommatori, moltiplicatori,
	multiplexer) e sequenziali (latch, flip-flop, contatori, registri, macchine a
	stati finiti), memorie a semiconduttore (ROM, PROM, EPROM, EEPROM,
	FLASH, SRAM, DRAM, CAM), dispositivi logici programmabili (PLA,
	FPGA architettura e programmazione).
5/3	Identificazione delle strutture di elaborazione, differenze tra segnali analogici
	e digitali, effetto del rumore e disturbi.
5/3	Principi di conversione analogico-digitale e digitale-analogica, teorema di
3/3	Shannon, dimensionamento di sistemi di acquisizione dati e problemi di
	interfacciamento.
3/2	Cenni alle architetture delle unità a microprocessore, protocolli di
3/2	<u> </u>
2 /2	comunicazione e relativi supporti fisici.
2/2	Tecnologie per la realizzazione di sistemi e apparati elettronici.
Totale: 40/20	
TESTI	
CONSIGLIATI	
	Materiale didattico di riferimento verrà reso disponibile sugli argomenti svolti
	nel corso delle lezioni e sulle applicazioni sviluppate nelle esercitazioni.
	William B. Ribbens "Understanding Automotive Electronics" fifth edition,
	Newnes, Butterworth-Heinemann, 1998
	Richard J. Jaeger, "Microelettronica", McGraw-Hill, 1998
	<i>C</i> , , , , ,