SCUOLA	Scienze di Base e Applicate
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA	Conservazione e Restauro dei Beni Culturali (abilitante ai
MAGISTRALE A CICLO	sensi del dlgs 42/2004)
UNICO	,
INSEGNAMENTO	Fisica tecnica ambientale
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Scienze e tecnologie per la conservazione e il restauro
CODICE INSEGNAMENTO	03324
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO	ING-IND/11
DISCIPLINARI	
DOCENTE RESPONSABILE	Vincenzo Franzitta
	Ricercatore
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE	102
ALLO STUDIO PERSONALE	
NUMERO DI ORE RISERVATE	48
ALLE ATTIVITÀ	
DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO	Dipartimento di Fisica e Chimica. Ed. 17 Viale delle Scienze
DELLE LEZIONI	
ORGANIZZAZIONE DELLA	Lezioni frontali
DIDATTICA	
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo Semestre
CALENDARIO DELLE	http://portale.unipa.it/dipartimenti/dipartimentofisicaechimica
ATTIVITÀ DIDATTICHE	/cds/conservazioneerestaurodeibeniculturali2187/
OD A DIO DI DICENIMENTE	do concondoro
ORARIO DI RICEVIMENTO	da concordare
DEGLI STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Il corso si propone di fornire metodi per la risoluzione di problemi di natura termodinamica, fluidodinamica, di trasmissione del calore ed impiantistica maggiormente ricorrenti nella pratica ingegneristica

Capacità di applicare conoscenza e comprensione

Lo studente deve essere in grado di comprendere le metodiche di progettazione e controllo della qualità ambientale degli spazi confinati

Autonomia di giudizio

Lo studente deve sapere operare una scelta consapevole dei metodi di intervento

Abilità comunicative

Capacità di interloquire e interagire con tutte le altre figure professionali che partecipano al processo di conservazione

Capacità d'apprendimento

Sviluppo delle capacità di apprendimento necessarie per intraprendere studi successivi con un alto grado di autonomia

OBIETTIVI FORMATIVI DEL MODULO

Il Corso si propone di fornire metodi per la risoluzione di problemi di natura termodinamica, fluidodinamica, di trasmissione del calore ed impiantistica maggiormente ricorrenti nella pratica ingegneristica. Il Corso pone anche l'accento sulle metodiche di progettazione e controllo della qualità ambientale degli spazi confinati.

qualità ambientale degli spazi confinati.		
MODULO	Fisica tecnica ambientale	
ORE	LEZIONI FRONTALI	
FRONTALI		
3	Sistemi e principi della termodinamica: Il I principio della termodinamica per	
	i sistemi chiusi – Calori specifici – Entalpia – Il II principio della	
	termodinamica – Enunciati di Kelvin e di Clausius – Reversibilità – Effetti	
	dissipativi – Rendimento termodinamico – Ciclo di Carnot per un gas perfetto	
	– Entropia – Entropia per un gas perfetto – Le irreversibilità nei processi di	
	trasformazione	
4	Sistemi aperti ed elementi di fluidodinamica: Bilanci di massa e di energia	
	meccanica – Equazione di continuità – Il I principio della termodinamica ed	
	applicazioni – Aspetti fisici del moto di un fluido – Moto laminare e	
	turbolento – Viscosità – Strato limite dinamico – Equazioni fondamentali del	
	moto isotermo	
4	Sistemi omogenei: Equazione di stato – Diagrammi termodinamici –	
	Diagramma pressione – volume (P-V) – Proprietà termodinamiche dei liquidi,	
	dei vapori saturi e dei vapori surriscaldati – Proprietà termodinamiche e	
	trasformazioni dei gas perfetti - Proprietà termodinamiche dei gas reali -	
	Equazione di Van der Walls – Legge degli stati corrispondenti	
4	Sistemi a più componenti non reagenti in fase gassosa: Miscele di gas perfetti	
	– Miscele di gas e vapori – Elementi di psicrometria – miscele di aria e vapor	
	d'acqua – Umidità specifica e relativa – Temperature di rugiada e di	
	saturazione adiabatica – Aria Umida - Diagramma di Mollier – Diagramma di	
	Carrier	
3	<u>Cicli termodinamici fondamentali</u> : Cicli motori a gas: ciclo Otto – Ciclo	
	Diesel – Cicli di vapore: Ciclo di Carnot – ciclo Rankine – Ciclo frigorifero –	
10	Pompa di calore	
12	<u>Conduzione:</u> Legge di Fourier – Equazione generale della conduzione –	
	Regime stazionario e regime variabile – Analogia elettrica – Risoluzione dei	
	problemi con metodi numerici <u>Convezione</u> : Strato limite termico –	
	Convezione forzata, naturale e mista – Numeri di Nusselt, Prandtl e Grashof-	
	Analisi dimensionale – Similitudine Arragogiamento: Rediggioni termiche Coefficienti di riflessione di	
	<u>Irraggiamento:</u> Radiazioni termiche – Coefficienti di riflessione, di	
	trasmissione e di assorbimento – Corpo nero – Potere emissivo monocromatico, angolare ed integrale – Intensità di radiazione – Leggi	
	dell'Irraggiamento – Emissività – Principio di Kirchoff – Fattori di vista:	
	relazioni di reciprocità, di additività e di chiusura	
	refazioni di fecipiocha, di additività e di ciliusura	

5	Energetica edilizia: Dati climatici per la progettazione edilizia – Cenni Legge 10/91 e normativa energetica – Calcolo delle ombre proprie e portate – Il trasferimento di massa ed il metodo Glaser - Cenni di IAQ e Comfort
	Termoigrometrico – Cenni sul risparmio energetico negli edifici
5	Elementi di acustica fisica ed applicata: Onde sonore – Grandezze acustiche –
	Acustica degli ambienti interni – Correzioni acustiche delle sale – Controllo
	del rischio di danno uditivo negli ambienti di lavoro – Criteri di valutazione
	del disturbo da rumore
4	Elementi di illuminotecnica: Grandezze fotometriche – Sorgenti luminose
	artificiali: classificazione delle lampade, parametri caratteristici – La scelta
	delle lampade – Illuminazione diurna – Metodo B.R.S.
4	Elementi di impiantistica: Principi di condizionamento degli ambienti e
	trasformazioni termodinamiche - Dimensionamento di massima di un
	impianto di condizionamento
TESTI	G. Rodonò – R. Volpes; Fisica Tecnica 1 – Termodinamica, Flaccovio
CONSIGLIATI	G. Rodonò – R. Volpes; Fisica Tecnica 1 – trasmissione del calore e moto dei
	fluidi, Flaccovio
	Y. Cengel – Termodinamica e trasmissione del calore, Mc Graw Hill
	Materiale didattico fornito dal docente