STRUTTURA	Scuola Politecnica - DICGIM
ANNO ACCADEMICO	2014-2015
CORSO DI LAUREA MAGISTRALE	Ingegneria Chimica
INSEGNAMENTO	Chimica Applicata alla Tutela dell'Ambiente
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Chimica
CODICE INSEGNAMENTO	01817
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	Ing-Ind/22
DOCENTE RESPONSABILE	Roberto Scaffaro
	Professore Associato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Prova Scritta
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Da lunedì a venerdì, dalle 10 alle 12 salvo
STUDENTI	impegni istituzionali

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del Corso avrà conoscenza delle principali problematiche inerenti la chimica dell'ambiente con particolare riferimento all'inquinamento di acqua, aria, suolo ed i principali metodi di depurazione e trattamento di inquinanti. Particolare accento verrà posto sulle problematiche ingegneristiche (verifica e progetto) legate ai processi chimici e biochimici descritti.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di descrivere ed utilizzare diversi processi chimici e biochimici per valutare l'efficienza di trattamenti di disinquinamento o la magnitudine di fenomeni di inquinamento. Saprà correlare e far interagire sinergicamente i diversi processi studiati al fine di ottimizzare i trattamenti per l'abbattimento di inquinanti.

Autonomia di giudizio

Lo studente sarà in grado di interpretare i dati grezzi per valutare l'entità dell'inquinamento di acqua, aria, suolo. Lo studente sarà anche in grado di impostare problemi di progetto e di verifica inerenti problematiche ambientali.

Abilità comunicative

Lo studente acquisirà la capacità di comunicare ed esprimere problematiche inerenti l'oggetto del corso. Sarà in grado di sostenere conversazioni su tematiche ambientali, di evidenziare problemi relativi alla gestione degli inquinanti e proporre soluzioni e valutarne criticamente la loro efficacia.

Capacità d'apprendimento

Lo studente avrà appreso le interazioni tra i processi chimici e biochimici e le problematiche ingegneristiche. Ciò gli consentirà di proseguire di proseguire gli studi di ingegneria con maggiore autonomia e dinamicità.

OBIETTIVI FORMATIVI

Obiettivi

Il corso fornisce le conoscenze fondamentali per la comprensione dei fenomeni chimici di interesse ambientale. Vengono in particolare trattati i processi chimici e biochimici che interessano le acque e l'atmosfera nonché i loro principali inquinanti organici ed inorganici. Vengono anche trattati i processi di disinquinamento, in particolare delle acque. Sono inoltre passate in rassegna le più importanti classi di rifiuti solidi urbani e industriali oltre che i rifiuti tossici e nocivi, indicando le principali tecniche di smaltimento. Infine, vengono dati cenni alla normativa in vigore in tema di ambiente e di valutazione di impatto ambientale.

Programma:

Acqua - Proprietà dell'acqua e delle soluzioni acquose. Analisi e caratterizzazioni di acque naturali. Richiami e complementi sui trattamenti delle acque: sedimentazione, chiarificazione, degasazione, addolcimento, demineralizzazione, ossidazione. Alghe, batteri, funghi. Processi biochimici: Trasformazioni batteriche di azoto, fosforo, zolfo, composti alogenati; Idrolisi, riduzioni, dealogenazioni, dealchilazioni. Sostanze inquinanti e nocive. Depurazione delle acque reflue civili e industriali: trattamenti fisici, chimici e biologici. Dissalazione delle acque marine e salmastre.

Atmosfera – Composizione e caratteristiche. Processi chimici e biochimici. Ciclo dell'ossigeno. Ciclo dell'azoto. Particelle solide. Inquinanti atmosferici. Principali sistemi di disinquinamento. Smog fotochimico.

Combustibili e combustione: Combustibili solidi, liquidi e gassosi. Combustioni complete ed incomplete. Combustioni difettose. Fumi di combustione. Trattamenti sui combustibili: abbattimento dello zolfo, raffinazione dei greggi petroliferi, produzione di gas da combustibili solidi.

Rifiuti tossici e nocivi: Classificazione e caratteristiche. Principali processi di smaltimento fisici e chimici. Elementi di tossicologia.

Rifiuti solidi urbani - Composizione e principali trattamenti. Riutilizzo, riciclo, inertizzazione, recupero energetico, discariche controllate.

ORE FRONTALI	LEZIONI FRONTALI
10	Acqua
8	Atmosfera
7	Combustibili e combustione
7	Rifiuti tossici e nocivi
6	Rifiuti solidi urbani
	ESERCITAZIONI
4	Acque reflue e trattamenti
4	Atmosfera e inquinamento
2	Inquinamento di acque e suolo

TESTI	- C. Brisi, Chimica Applicata, Levrotto e Bella
CONSIGLIATI	- G. Polizzotti, L'acqua, dispense
	- S.E. Manahan, Chimica Ambientale, Piccin