FACOLTÀ	Ingegneria	
ANNO ACCADEMICO	2012/2013	
CORSO DI LAUREA MAGISTRALE	Ingegneria Elettronica	
INSEGNAMENTO	Fisica dei Materiali per l'Elettronica	
TIPO DI ATTIVITÀ	Affine	
AMBITO DISCIPLINARE	Fisica e chimica	
CODICE INSEGNAMENTO	08982	
ARTICOLAZIONE IN MODULI	NO	
NUMERO MODULI		
SETTORI SCIENTIFICO DISCIPLINARI	FIS/03	
DOCENTE RESPONSABILE	Dominique Persano Adorno	
	Ricercatore confermato	
	Università di Palermo	
CFU	6	
NUMERO DI ORE RISERVATE ALLO	90	
STUDIO PERSONALE		
NUMERO DI ORE RISERVATE ALLE	60	
ATTIVITÀ DIDATTICHE ASSISTITE		
PROPEDEUTICITÀ	Conoscenze di Fisica e Matematica acquisite nel	
	corso di laurea di primo livello	
ANNO DI CORSO	Primo	
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it	
LEZIONI		
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, esercitazioni in aula	
MODALITÀ DI FREQUENZA	Facoltativa	
METODI DI VALUTAZIONE	Prova orale	
TIPO DI VALUTAZIONE	Voto in trentesimi	
PERIODO DELLE LEZIONI	Primo semestre	
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it	
DIDATTICHE		
ORARIO DI RICEVIMENTO DEGLI	Consultare il sito www.ingegneria.unipa.it	
STUDENTI		

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente, al termine del Corso, avrà acquisito i concetti di base della meccanica quantistica. Inoltre, avrà conoscenza della fenomenologia e dei principi fondamentali della fisica atomica e dello stato solido.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di schematizzare i fenomeni fisici studiati e di applicare i principi e le equazioni della meccanica quantistica ai modelli fisici usati per la descrizione di processi fisici elementari.

Autonomia di giudizio

Lo studente sarà in grado di correlare i dati osservativi relativi ai fenomeni studiati, riconoscendo le leggi che li governano; sarà in grado di valutare criticamente i risultati qualitativi e quantitativi ottenuti dall'uso delle equazioni che descrivono i processi fisici coinvolti.

Abilità comunicative

Lo studente avrà acquisto la capacità di esporre con coerenza e proprietà di linguaggio le problematiche inerenti gli argomenti del corso, sapendo cogliere le connessioni con gli argomenti trattati nei corsi frequentati in precedenza o nello stesso semestre.

Capacità d'apprendimento

Lo studente avrà appreso le leggi fondamentali della meccanica quantistica; avrà conoscenza delle proprietà elettroniche dei metalli dei semiconduttori e degli isolanti ,e, sarà in grado di affrontare in modo critico ed autonomo problematiche tipiche poste dallo sviluppo di tecnologie avanzate nel settore della microelettronica.

OBIETTIVI FORMATIVI

Obiettivi formativi sono: (a) l'acquisizione dei concetti di base della meccanica quantistica; (b) la conoscenza della fenomenologia e dei principi fondamentali della fisica atomica e della fisica dello stato solido.

ORE	LEZIONI FRONTALI
FRONTALI	EEEIOWI KOWINEI
8	Radiazione di corpo nero e legge di Planck; effetto fotoelettrico; effetto Compton; modello atomico di Bohr (idrogeno) e principio di corrispondenza; esperimento di diffrazione di Davisson e Germer; dualismo onda-corpuscolo e complementarietà; principio di indeterminazione.
8	Equazione di Schroedinger; la funzione d'onda e la sua interpretazione probabilistica; operatori hermitiani e grandezze fisiche; Misura di una grandezza fisica e significato degli autovalori; misura contemporanea di più grandezze fisiche.
14	Particella libera; oscillatore armonico; particella nella buca di potenziale cenni sull'effetto tunnel; quantizzazione del momento angolare e spin dell'elettrone; l'atomo di idrogeno; teoria delle perturbazioni indipendenti e dipendenti dal tempo; principio di indistinguibilità delle particelle identiche; principio di esclusione di Pauli ; tavola periodica degli elementi; equazione di Schroedinger per un sistema di atomi: approssimazione di Born – Oppenheimer.
12	Meccanica statistica quantistica: statistica di Bose-Einstein, statistica di Fermi-Dirac; tipi di legame nei solidi elettrone in un reticolo monodimensionale; reticoli cristallini; spazio reciproco; zone di Brillouin; teorema di Bloch; bande di energia per un elettrone in un solido; modelli di Drude e di Sommerfeld della conducibilità elettrica nei metalli; moto dell'elettrone in un potenziale esterno e concetto di massa efficace; bande di energia nei semiconduttori; concetto di "buca" e livello di Fermi.
	ESERCITAZIONI
4	Radiazione di corpo nero e legge di Planck; effetto fotoelettrico; effetto Compton; modello atomico di Bohr (idrogeno) e principio di corrispondenza; esperimento di diffrazione di Davisson e Germer; dualismo onda-corpuscolo e complementarietà; principio di indeterminazione.
2	Equazione di Schroedinger; la funzione d'onda e la sua interpretazione probabilistica; operatori hermitiani e grandezze fisiche; Misura di una grandezza fisica e significato degli autovalori; misura contemporanea di più grandezze fisiche. Calcolo dell'energia elettrostatica nel vuoto e in un dielettrico.
8	Particella libera; oscillatore armonico; particella nella buca di potenziale cenni

4	sull'effetto tunnel; quantizzazione del momento angolare e spin dell'elettrone; l'atomo di idrogeno; teoria delle perturbazioni indipendenti e dipendenti dal tempo; principio di indistinguibilità delle particelle identiche; principio di esclusione di Pauli; tavola periodica degli elementi; equazione di Schroedinger per un sistema di atomi: approssimazione di Born – Oppenheimer. Meccanica statistica quantistica: statistica di Bose-Einstein, statistica di Fermi-Dirac; tipi di legame nei solidi elettrone in un reticolo monodimensionale; reticoli cristallini; spazio reciproco; zone di Brillouin; teorema di Bloch; bande di energia per un elettrone in un solido; modelli di Drude e di Sommerfeld della
	conducibilità elettrica nei metalli; moto dell'elettrone in un potenziale esterno e concetto di massa efficace; bande di energia nei semiconduttori; concetto di "buca" e livello di Fermi.
CONSIGLIATI	 M. Alonso e E.J. Finn. "Fundamental University Physics - vol. III - Quantum and Statistical Physics" (Addison-Wesley Publishing Co.). C.L.Tang. "Fundamentals of Quantum Mechanics For Solid State Electronics and Optics". Cambridge University Press. J. Singh. "Modern Physics for Engineers". John Wiley and Sons, inc. New York