FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2013-2014
CORSO DI LAUREA MAGISTRALE	Ingegneria Meccanica
INSEGNAMENTO	Complementi di costruzione di macchine
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Meccanica
CODICE INSEGNAMENTO	02104
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/14
DOCENTE RESPONSABILE	Giovanni Petrucci
	P.O.
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	141
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	84
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Materie della triennale: Scienza delle
	costruzioni, Costruzione di macchine
	Materie consigliate del corso Magistrale di
	Palermo: Statistica, Metodi numerici
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Esecuzione e discussione dei
	programmi informatici sviluppati durante le
	esercitazioni
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Da Lunedì a Venerdì dalle 11.00 alle 13.00
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Il corso si propone di fare acquisire allo studente le seguenti conoscenze e capacità: una conoscenza e una comprensione approfondite dei principi matematici e scientifici e degli aspetti metodologico-operativi della costruzione di macchine; una consapevolezza critica degli ultimi sviluppi nel settore, con particolare riferimento alla fatica aleatoria e alla fatica multiassiale dei componenti meccanici; una profonda comprensione delle tecniche applicabili e delle loro limitazioni.

Capacità di applicare conoscenza e comprensione

Il corso si propone di fare acquisire allo studente le seguenti conoscenze e capacità: capacità di utilizzare le conoscenze di matematica, fisica e scienza delle costruzioni per interpretare e descrivere problemi poco noti e definiti in modo incompleto dell'ingegneria strutturale in campo

meccanico; la capacità di formulare e di risolvere problemi in aree nuove ed emergenti dell'ingegneria strutturale in campo meccanico.

Autonomia di giudizio

Il corso si propone di sviluppare nello studente abilità decisionali ed interpretative concernenti la scelta di tecniche di calcolo, semplificazione di problemi, analisi di dati sperimentali finalizzate alla progettazione meccanica e alla sicurezza strutturale.

Abilità comunicative

Il corso si propone di sviluppare nello studente la capacità di comunicare ed esprimere con competenza e proprietà di linguaggio le problematiche dell'ingegneria strutturale in campo meccanico.

Capacità d'apprendimento

Il corso si propone di sviluppare capacità d'apprendimento delle innovazioni teoriche e pratiche dell'analisi strutturale e di calcolo e progetto di componenti meccanici .

OBIETTIVI FORMATIVI

Il corso si propone di formare lo studente affinché sia in grado di analizzare e comprendere le problematiche di sollecitazione e resistenza di materiali, componenti e strutture meccaniche, di applicare le metodologie di calcolo e progetto di componenti e strutture meccaniche attualmente disponibili, di comprendere ed apprendere le innovazioni teoriche e pratiche del settore della costruzione di macchine.

ORE FRONTALI	LEZIONI FRONTALI
10	Approfondimenti su stato tensionale e teoria dell'elasticità, introduzione ai
	materiali ortotropi
14	Metodi di calcolo avanzati su componenti meccanici: piastre e lastre, cilindri
	in pressione, dischi rotanti
28	Metodi avanzati di analisi a fatica: fatica ad ampiezza variabile e in campo
	aleatorio, effetto della componente media, fatica multiassiale
4	Analisi tensionale in campo plastico: criterio di Neuber:
	ESERCITAZIONI
	Sviluppo di programmi informatici di calcolo in linguaggio Matlab per
	l'analisi e la soluzione di problemi relativi a :
6	Stato tensionale – materiali ortotropi
6	Piastre
6	Cilindri in pressione - Dischi rotanti
6	Esting ad ampiagra variabile in sampa electoric ad affetta tanciana madia
0	Fatica ad ampiezza variabile, in campo aleatorio ed effetto tensione media
2	Fatica multiassiale
2	Tauca muitiassiale
2	Plasticità
	1 Institution
TESTI	Dispense del docente scaricabili dal sito dell'Università di Palermo
CONSIGLIATI	T