SCUOLA	SCIENZE di BASE E APPLICATE
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA MAGISTRALE	Chimica
INSEGNAMENTO	Sostanze Naturali
TIPO DI ATTIVITÀ	Opzionale
AMBITO	
CODICE INSEGNAMENTO	
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/06
DOCENTE RESPONSABILE	Sergio Rosselli
(MODULO 1)	Ricercatore CONFERMATO
	Università di Palermo
DOCENTE COINVOLTO	
(MODULO 2)	
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Secondo
SEDE	Aula D Ed. 17
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Da calendario del CISC
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lunedì, Mercoledì
STUDENTI	Ore 10-11

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Verranno descritti in dettaglio i percorsi biosintetici che portano alla formazione delle principali classi dei metaboliti secondari, le caratteristiche chimiche e strutturali e le proprietà biologiche più importanti di tali molecole. Si discuteranno le tecniche e le problematiche di isolamento e purificazione ed analisi delle principali classi di molecole. Durante le lezioni saranno descritti e commentati alcuni esempi di sintesi di prodotti naturali.

Capacità di applicare conoscenza e comprensione

Lo studente alla fine del corso deve essere in grado di classificare le molecole naturali nell'ambito delle tipologie proposte, individuando la via metabolica che le produce. Dovrà altresì essere in grado di evidenziare le proprietà chimiche dei gruppi funzionali nonché le caratteristiche spettroscopiche più evidenti per la corretta caratterizzazione delle molecole.

Autonomia di giudizio

Lo studente dovrà essere in grado di pianificare le operazioni per l'isolamento e la purificazione dei prodotti naturali, prevedendo l'uso delle appropriate tecniche separative e di caratterizzazione.

Abilità comunicative

Capacità di usare il linguaggio scientifico più appropriato per la descrizione delle molecole naturali e dei processi biosintetici.

Capacità d'apprendimento

Capacità di comprensione autonoma dei testi scientifici inerenti la biosintesi e la sintesi di molecole naturali nonché delle tecniche di analisi strutturale.

OBIETTIVI FORMATIVI DEL MODULO

Obiettivo del modulo è quello di conoscere i percorsi biosintetici che portano alle principali classi di prodotti naturali. Conoscenza delle tecniche di purificazione e caratterizzazione dei metaboliti secondari.

MODULO	SOSTANZE NATURALI
ORE FRONTALI	LEZIONI FRONTALI
5	Principali reazioni enzimatiche e parallelismo con le classiche reazioni di laboratorio
5	Via biogenetica dell'acido acetico ed esempi di metaboliti correlati. Polichetidi, naftochinoni
	e antrachinoni
3	Acidi grassi – struttura, biosintesi, β-ossidazione. Acidi grassi saturi, insaturi. Proprietà
	chimiche ed analisi. Fosfolipidi. Prostaglandine
2	Sintesi delle prostaglandine
10	Via biogenetica dell'acido mevalonico ed esempi di metaboliti correlati. Terpeni -
	Classificazione. Regola isoprenica strutturale. Regola isoprenica biogenetica. Isoprene attivo.
	Acido mevalonico ed emiterpeni. Monoterpeni. Sesquiterpeni (esempi di caratterizzazione).
	Diterpeni (esempi di caratterizzazione). Triterpeni. Carotenoidi
2	Analisi degli oli essenziali. Indici di Kovats
5	Sterodi - Trasformazione del lanosterolo in colesterolo. Steroidi naturali. Fitosteroli. Veleni
	cardiaci: metaboliti da digitalis. Saponine. Degradazione di Marker. Ecdisoni: ormoni degli
	insetti. Corticosteroidi. Progestinici. Androgeni. Estrogeni
8	Via biogenetica dell'acido shikimico ed esempi di metaboliti correlati. Biosintesi degli
	amminoacidi aromatici. Derivati dalla fenilalanina via acido cinnamico.Derivati dalla
	fenilalanina via acido cinnamico. Fenilpropanoidi. Lignani. Lignine. Flavonoidi.
	Isoflavonoidi. Proprietà spettroscopiche dei flavonoidi. Esempi.
2	Determinazione della configurazione assoluta di un alcol secondario.
6	Alcaloidi isolamento e tipologia. – Alcaloidi da ornitina e lisina: Nicotina e Anabasina,
	Cocaina. Alcaloidi da tirosina: catecolammine. Alcaloidi isochinolinici: morfinani. Alcaloidi
	indolici: Acido Lisergico
	EGED GAT ANOM
	ESERCITAZIONI
TOTAL COMP	Non sono al momento previste esercitazioni
TESTI	P. M. Dewick, <i>Chimica, biosintesi e bioattività delle sostanze naturali</i> , Piccin,
CONSIGLIATI	S. Berger, D. Sicker. Classics in spectroscopy-isolation and structure elucidation of natural
	products. WILEY-VCH
	Appunti di lezione