FACOLTÀ	SCIENZE MM.FF.NN.
ANNO ACCADEMICO	2014/15
CORSO DI LAUREA (o LAUREA	Laurea in Scienze Fisiche
MAGISTRALE)	Educa in Scienze 1 islene
INSEGNAMENTO	Struttura della materia
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Microfisico e della struttura della materia
CODICE INSEGNAMENTO	07136
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	FIS/03
DOCENTE RESPONSABILE (MODULO 1)	Antonino Messina
	Prof. Ordinario
	Univ. di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	
STUDIO PERSONALE	145
NUMERO DI ORE RISERVATE ALLE	
ATTIVITÀ DIDATTICHE ASSISTITE	80
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Terzo
SEDE DI SVOLGIMENTO DELLE	Aula D, Dip. Scienze Fisiche ed Astronomiche
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova scritta e prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Intero anno accademico
CALENDARIO DELLE ATTIVITÀ	Secondo calendario approvato dal CISF
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni dispari dalle 17:00-18:00, salvo
STUDENTI	impegni istituzionali

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Gli studenti apprendono contenuti introduttivi riguardanti la fisica statistica classica e quantistica, la fisica atomica e molecolare, fisica dello stato solido. Il corso presenta idee e metodi in continuità con il grado di formazione raggiunto all'inizio del terzo anno.

Capacità di applicare conoscenza e comprensione

Agli studenti verrà offerta una continua opportunità di interazione con il docente durante lo svolgimento delle lezioni e delle esrcitazioni. Queste ultime sono finalizzate alla familiarizzazione con gli aspetti quantitativi e qualitativi della materia, comprendendo anche l'acquisizione di confidenza con gli ordini di grandezza di specifico interesse nel corso.

Autonomia di giudizio

Lo studente è stimolato a curare l'aspetto rielaborativo di ciò che apprende in classe con lo scopo primario di addestrarlo alla comprensione dei problemi e alla ricerca di metodi semplici di risoluzioni degli stessi.

Abilità comunicative

La classe è occasionalmente invitata a dibattere sul significato e sulla risoluzione di quesiti strategicamente somministrati dal docente.

Capacità d'apprendimento

Particolare cura è dedicata alla puntuale indicazione della bibliografia, in genere libri di testo, da utilizzare per ottimizzare la fruizione del lavoro svolto in aula.

OBIETTIVI FORMATIVI DEL MODULO

1) comprensione e utilizzazione dei metodi di base della meccanica statistica; 2) studio dettagliato di semplici sistemi trattati con tali metodi; 3) conoscenza di base di metodi per lo studio di proprietà di atomi complessi e semplici molecole; 4) Studio dettagliato si semplici sistemi atomici e molecolari; 5) Familiarizzazione con ordini di grandezza e approccio quantitativo alla risoluzione di semplici problemi di meccanica statistica e di fisica atomica e molecolare.

MODULO	DENOMINAZIONE DEL MODULO
ORE FRONTALI	LEZIONI FRONTALI
18	Fisica statistica classica: potenziali termodinamici, microstati ed Entropia,
	insiemei statistici microcanonico, canonico e gran canonico con relative
	applicazioni.Sistemi quantistici di particelle identiche: distribuzione di Fermi
	Dirac e di Bose Einstein. Gas di fermioni degenere. Gas di bosoni degenere.
	Gas di fotoni
1 6	Statistica quantistica: particelle identiche e postulato di simmetrizzazione,
	descrizione grancanonica di sistemi ideali quantistici, proprietà
	termodinamiche del gas ideale di bosoni ed il fenomeno della condensazione,
	proprietà temodinamiche del gas ideale di fermi e applicazioni.
22	Atomi e molecole: introduzione alle proprietà di atomi e molecole.Atomi
	alcalini.Atomo di Elio. L'approssimazione di campo centrale. Il metodo di
	Hartree-Fock. Cenni su l'accoppiamento di momenti angolari e la struttura
	dei multipletti.L'approssimazione di Born Oppenhimer. Gli stati elettronici
	molecolari. Lo ione idrogeno. Orbitali molecolari . Il moto dei nuclei.
	Equazioni di Hartree edi Hartree-Fock. Cenni al funzionale densità
10	ESERCITAZIONI
10	Calcolo di numero di microstati
	Sistemi microcanonici
	Sistemi canonici
	Sistemi macrocanonici
8	Uso di potenziali temodinamici Particelle identiche
0	
	Sistemi di bosoni non interagenti Sistemi di fermioni non interagenti
	Analisi di fenomeni di condensazione
6	Atomi idrogenoidi in campi statici
O	Atomi elioidi in campi statici
	Accoppiamenti di momenti angolari e configurazioni elettroniche
	Proprietà di simmetria di semplici molecole
TESTI	Greiner- Thermodynamics and statistical mechanics Springer Verlag
CONSIGLIATI	N Manini-Introduction to Physics of matter IBS milano
	Kittel- Introduzione alla fisica dello stato solido Boringhieri
	Goodstein- States of matter Dover
	Reif_Fundamentals of statistical and thermal physics Macgrow
	Eisberg and ResnickQuantum physics of atoms, molecules solids Wiley
	Specifici testi da consultare per argomenti particolari saranno indicate a
	lezione dal docente