FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2013-14
CORSO DI LAUREA MAGISTRALE	Ingegneria Meccanica
INSEGNAMENTO	Progettazione di processo
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Meccanica
CODICE INSEGNAMENTO	10069
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	-
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/16
DOCENTE RESPONSABILE	Gianluca Buffa
	R.U.
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Tecnologia Meccanica
	Simulazione numerica per l'industria meccanica
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Presentazione di un progetto
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedì 10-13
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione di conoscenze specifiche nei seguenti ambiti:

- Algoritmi numerici per la simulazione del comportamento dei materiali metallici in campo plastico
- Definizione delle condizioni al contorno dei principali processi di formatura dei metalli
- Definizione del comportamento plastico dei materiali metallici anche in temperatura
- Messa a punto della simulazione numerica di processi di formatura di pezzi pieni e lamiere
- Post-processing critico dei risultati ottenuti

Lo studente al termine del corso risulterà in grado di svolgere attività di Computer Aided Engineering di processi di formatura di pezzi pieni e lamiere metalliche.

Capacità di applicare conoscenza e comprensione

Applicazione di un corretto approccio nonché di realizzare una valutazione critica dei risultati

ottenuti.

Autonomia di giudizio

Capacità di esaminare i risultati ottenuti ed apporre correttivi ed affinamenti ai modelli numerici realizzati.

Abilità comunicative

Capacità di esporre i risultati degli studi e delle valutazioni condotte, anche ad un pubblico non esperto. Essere in grado di sostenere l'importanza ed evidenziare le ricadute delle ingegnerizzazioni svolte.

Capacità d'apprendimento

Capacità di aggiornamento con la consultazione di testi e riviste scientifiche del settore. Capacità di utilizzare codici numerici di tipo commerciale anche diversi da quelli utilizzati durante il corso.

OBIETTIVI FORMATIVI

Lo studente, al termine del corso, avrà acquisito conoscenze e metodologie pratiche per la simulazione dei processi di formatura dei metalli. Sarà in grado di analizzare risultati di simulazioni condotte e di affinare modelli numerici al fine di ottenere risultati maggiormente rispondenti alla realtà.

Lo studente sarà in grado di svolgere la funzione di consulente dell'imprenditore, al fine di mettere a punto procedure per l'ingegnerizzazione dei processi.

ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione
	 Perché "progettare" processi di formatura
	Sviluppo storico
	Il metodo FEM e sue potenzialità
2	Basics
	Definizioni / Classificazioni
	Notazioni matematiche
	Richiami della teoria FEM
2	Formulazioni Implicite
	Flow formulation – Solid formulation
	Confronti e caratteristiche
	Algoritmo Esplicito
2	Caratteristiche e specifiche
	Algoritmi di contatto
1	Formulazioni
	Applicazioni nei codici commerciali
2	La simulazione di processi di bulk forming
2	Caratteristiche
	• Elementi
	Processi tradizionali
	Processi innovativi
	Sequenze di forgiatura
	La simulazione di processi di stampaggio di lamiere
3	Caratteristiche
	Elementi (gusci, membrane ecc)
	Processi tradizionali
	Processi innovativi
	Il ritorno elastico

	Analisi termo-meccaniche
2	Il problema termico
	Algoritmi e schemi di soluzione
	Previsione di fratture duttili
2	I criteri di frattura
	Teoria della meccanica della frattura
	Problemi aperti
1	Algoritmi di remeshing (cenni)
	Stimatore di Errore
	Progettazione mediante AI
2	Strumenti di AI
	Casi di studio
Tot. 20	
10020	ESERCITAZIONI
15	La simulazione di processi di bulk forming
13	La simulazione di processi di buik forming
15	La simulazione di processi di stampaggio di lamiere
6	Analisi termo-meccaniche
4	Previsione di fratture duttili
Tot. 40	
TESTI	Dispense del corso
CONSIGLIATI	Presentazioni del corso
	F. Micari, R. Ippolito, F. Gabrielli "Tecnologia Meccanica", Mc Graw
	Hill