FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2013/2014
CORSO DI LAUREA TRIENNALE	Scienze della Natura e dell'Ambiente
INSEGNAMENTO	Mineralogia e Geochimica C.I.
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline di scienze della terra
CODICE INSEGNAMENTO	05238
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	0
SETTORI SCIENTIFICO DISCIPLINARI	GEO/06
DOCENTE RESPONSABILE	Marcello Merli
(I MODULO)	Professore Associato
	Università di Palermo
DOCENTE RESPONSABILE	Parello Francesco
(II MODULO)	Professore Ordinario
	Università di Palermo
CFU	12
NUMERO DI ORE RISERVATE ALLO	204
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	96
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Secondo
SEDE	Consultare il calendario didattico 2013-2014 sul
	sito del CdL
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale finale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il calendario didattico 2013-2014 sul
DIDATTICHE	sito del CdL
ORARIO DI RICEVIMENTO DEGLI	Prof. Merli Marcello
STUDENTI	Mercoledì Ore 10-12 ufficialmente. In pratica
	ogniqualvolta lo studente necessita di aiuto
	Prof. Parello Francesco
	Mercoledì ore 9-11

RISULTATI DI APPRENDIMENTO ATTESI (MODULO I)

Conoscenza e capacità di comprensione

Acquisizione dei principi fondamentali per la comprensione dei fenomeni chimico-fisici riguardanti la genesi, la trasformazione e l'assemblaggio di minerali, abituando all'inferenza di tali principi a questioni più generali di carattere geo-petrologico da intraprendere in corsi successivi.

Capacità di applicare conoscenza e comprensione

Capacità di riconoscere le tecniche analitiche appropriate a seconda del problema da risolvere.

Autonomia di giudizio

Essere in grado di valutare le implicazioni a livello geo-petrologico e le problematiche inerenti alla sistematica mineralogica.

Abilità comunicative

Capacità di esporre i risultati degli studi mineralogici ed acquisizione del più elevato grado di

sintesi possibile, necessario per eviscerare i termini essenziali delle questioni in studio.

Capacità d'apprendimento

Capacità di aggiornamento con la consultazione delle pubblicazioni scientifiche proprie del settore della Mineralogia, anche con l'ausilio della navigazione web.

OBIETTIVI FORMATIVI DEL CORSO FRONTALE DI MINERALOGIA

Obiettivo del corso è quello di fornire le basi teoriche ovvero nozionistiche necessarie alla conoscenza in modo compiuto della Mineralogia, con particolare attenzione all'ammaestramento alla trasferibilità dei concetti di base a questioni riguardanti altre discipline nella ambito delle Scienze della Terra. In particolare, la preparazione di base prevede la comprensione del concetto di simmetria, la termodinamica elementare che spiega la genesi e l'evoluzione degli assemblaggi mineralogici oltre alla stabilità strutturale del minerale stesso (utilizzando le conoscenze derivanti dallo studio della cristallochimica), la caratterizzazione del minerale in termini di composizione chimica (tecniche analitiche e principi elementari alla base delle stesse) e proprietà fisiche. Il corso si conclude con lo studio della sistematica mineralogica, prestando particolare attenzione ai cosiddetti "minerali costituenti le rocce", di basilare dinteresse geologico. Molta attenzione è riservata alla sistematica, trattandosi di un corso di laurea in Scienze Naturali.

Modulo I	Corso di mineralogia
48 ORE FRONTALI	LEZIONI FRONTALI
1	Obiettivi della disciplina e sua suddivisione.
8	La simmetria e il suo ruolo nello studio dello stato solido
6	Elementi di cristallochimica
4	Termodinamica elementare - concetto di polimorfismo
6	Ottica cristallografica per la preparazione al laboratorio di Mineralogia.
1	Cristallofisica.
4	Tecniche di analisi mineralogica: diffrazione RX, fluorescenza RX, microscopia elettronica a
	scansione e a trasmissione, analisi chimica per assorbimento atomico, spettrometria di massa,
	microanalisi a ioni secondari, spettroscopie NMR,IR,VIS,UV,RX (XANES) e Mossbauer.
1	Sistematica Mineralogica: criteri di classificazione dei minerali
2	Sistematica: Elementi nativi, alogenuri.
2	Sistematica: Ossidi e idrossidi.
2	Sistematica: Solfuri
2	Sistematica: Carbonati, solfati, fosfati
1	Classificazione dei silicati.
8	Silicati, Minerali argillosi e Zeoliti
totale	
48	
TESTI	KLEIN C. (2004). Mineralogia. Ed. Zanichelli, Bologna.
CONSIGLIATI	Peccerillo, Perugini (2004) - Introduzione alla microscopia ottica, Morlacchi editore

RISULTATI DI APPRENDIMENTO ATTESI (MODULO II)

Si riferiscono all'insegnamento e non ai singoli moduli che lo compongono.

Vanno espressi utilizzando i descrittori di Dublino

Conoscenza e capacità di comprensione

Conoscere la composizione chimica delle sfere geochimiche e i meccanismi di trasferimento da una sfera geochimica ad un'altra.

Capacità di applicare conoscenza e comprensione

Essere in grado di stabilire quale è il meccanismo di trasporto e/o di mobilizzazione o di precipitazione di un composto nelle varie sfere geochimiche

Autonomia di giudizio

Essere in grado di interpretare i principali processi geochimici che si sviluppano sulla superficie della terra in relazione alle mutate condizioni ambientali

Abilità comunicative

Sapere interpretare e trasmettere l'importanza delle interconnessioni tra le varie sfere geochimiche

e la biosfera.

Capacità d'apprendimento

Essere in grado di unificare le conoscenze acquisite con i grandi temi delle scienze della terra.

OBIETTIVI FORMATIVI DEL MODULO

Conoscere e interpretare le relazioni tra le sfere geochimiche (crosta terrestre, idrosfera e atmosfera) e la biosfera.

MODULO II	CORSO DI GEOCHIMICA
48 ORE FRONTALI	LEZIONI FRONTALI
8	Dalla "Cosmochimica alla Geochimica": Processi di nucleosintesi stellare; Composizione della materia negli spazi interstellari; Classificazione spettrale delle stelle; Origine del sistema solare; Struttura e composizione del sole; Abbondanza degli elementi nel sistema solare; Stato fisico della terra; Struttura e composizione della terra; Composizione chimica della terra; Le meteoriti; Concetto di affinità geochimica.
8	Origine dell'atmosfera, degli oceani e delle prime forme di vita; composizione dell' atmosfera e dell'idrosfera primitiva; i gas vulcanici e le black smokers; l'esperimento di Stanley Miller e la formazione delle prime molecole organiche. I primi polimeri; Materiale genetico ed enzimi; Evoluzione dei processi metabolici; la fotosintesi. L'Idrosfera: Il ciclo dell'acqua e la circolazione atmosferica e oceanica; Flussi di massa tra i differenti reservoirs; energia del ciclo dell'acqua; Circolazione
	dell'atmosfera; circolazione oceanica; chimica dell'idrosfera. Diagrammi classificativi
8	L'Atmosfera: Chimica dell'atmosfera; Struttura dell' Atmosfera; tempi di residenza dei principali costituenti dell'atmosfera; "global warming" e ciclo del carbonio; principali processi fotochimici e l'ozono; processi di inquinamento a scala globale. Effetti dell'inquinamento: Inquinamento dell'aria ed effetti sulla salute; le piogge acide. Piogge e chimica dell'atmosfera; Processi di condensazione; Composizione chimica delle piogge. Cicli geochimici in atmosfera (ciclo dell'azoto e principali reazioni delle specie dell'azoto in atmosfera). Ciclo dell'ossigeno. Reservoirs (sorgenti- sink stato stazionario, tempo di residenza). Ciclo della CO_2 (source e sink)
8	Processi di interazione acqua -roccia: Prodotto di solubilità, solubilità dei minerali e indice di saturazione; soluzioni non ideali; coefficienti di attivita'; forza ionica. Meccanismi di dissoluzione; meccanismi di ossidazione (ossidazione della sostanza organica). Idrolisi acida (weathering dei silicati complessi). Controllo sulla cinetica delle reazioni di weathering; Temperatura e flusso della soluzione acquosa; Cinetica di reazione dei minerali e saturazione delle soluzioni; Influenza del tipo di roccia; Influenza del suolo e della componente organica. I prodotti solidi del processo di weathering (Minerali delle argille; Composizione dei minerali delle argille; Fattori che controllano la formazione dei minerali argillosi
8	Litosfera: Definizione di litosfera. Composizione chimica della della litosfera. Principali proprietà chimico-fisiche dei fusi silicatici . Equilibri di fase. Potenziale chimico. Fugacità ed attività. Processi di frazionamento degli elementi

8	durante i processi di fusione e cristallizzazione dei fusi silicatici. Elementi compatibili ed incompatibili. Ripartizione dei costituenti in tracce tra due fasi. Il ruolo dei volatili nei magmi. I gas vulcanici. Cenni di geochimica isotopica: isotopi stabili e instabili, principali tipi di decadimento; cinetica del decadimento. Il caso del sistema rubidio-stronzio.
	Abbondanze isotopiche. Gli isotopi stabili; gli isotopi stabili dell'acqua: Principali processi di frazionamento isotopico; il fattore di frazionamento. Frazionamento all'equilibrio. Frazionamento cinetico. Fattore di frazionamento e temperatura (il caso degli isotopi del carbonio). Principali tipi di standard internazionali. Frazionamento isotopico nell'idrosfera (esempio della distillazione di Raleigh).
TESTI CONSIGLIATI	 F. Parello; presentazioni in ppt. del corso K. Krauskopf; Introduction to Geochemistry. Mc Graw-Hill J. Drever; the geochemistry of natural waters. Prentice Hall R. Berner, Global environment, water air and geochemical cycles. Prentice Hall