STRUTTURA	Scuola Politecnica - DICGIM
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA MAGISTRALE	Ingegneria Chimica
INSEGNAMENTO	Radiation processing of Polymers
TIPO DI ATTIVITÀ	Affine
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	17582
	NO
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	C1: /07
SETTORI SCIENTIFICO DISCIPLINARI	Chim/07
DOCENTE RESPONSABILE	Nome e Cognome: Giuseppe Spadaro
	Qualifica: Prof. Ordinario
	Università di appartenza: Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	105
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	45
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Ogni giorno, previo accordo per e-mail.
STUDENTI	/1

RISULTATI DI APPRENDIMENTO ATTESI

- Conoscenza e capacità di comprensione Lo studente al termine del Corso avrà conoscenza delle problematiche inerenti il "Radiation processing" e le sue applicazioni, con riferimento alla sintesi e alla modifica di materiali polimerici per applicazioni tecnologiche e bio-tecnologiche avanzate. In particolare avrà conoscenze specifiche riguardo la natura delle radiazioni ionizzanti e la protezione dalle stesse; le metodologie industriali per la generazione di radiazioni ionizzanti, i fondamenti delle interazioni radiazioni-materia, le applicazioni per la sintesi e la modifica di materiali polimerici,
- Capacità di applicare conoscenze e comprensione: Le conoscenze relative al Radiation processing" ed alle sue applicazioni possono costituire per il futuro ingegnere magistrale in Ingegneria Chimica un importante strumento per le tecnologie di realizzazione di prodotti nel settore manifatturiero avanzato.
- Autonomia di giudizio: Lo studente sarà in grado di valutare autonomamente il grado di innovazione e le conseguenti ricadute positive sulla economicità e la sostenibilità ambientale nella realizzazione di prodotti di un processo alternativo ai processi industriali tradizionali, quale il "Radiation processing".

- Abilità comunicative: Lo studente acquisirà la capacità di comunicare ed esprimere problematiche inerenti l'oggetto del corso. Sarò in grado di sostenere conversazioni su tematiche relative agli aspetti fondamentali della disciplina facendo ricorso ad una terminologia scientifica adeguata.
- Capacità d'apprendimento: Lo studente avrà appreso i principi fondamentali del "Radiation processing" e delle sue applicazioni nell'ambito della sintesi e modifica dei materiali polimerici per applicazioni avanzate.

OBIETTIVI FORMATIVI

Il corso di "Radiation Processing of Polymers" si propone di fornire agli studenti:

- le conoscenze fondamentali relative alla generazione di radiazioni ionizzanti e delle sue interazioni con la materia, con particolare riferimento ai materiali polimerici
- le applicazioni di tale metodologia nel campo della sintesi e della modifica dei materiali polimerici.

ORE FRONTALI	LEZIONI FRONTALI
9	Fundamentals of Radiation Science and Engineering
9	Fundamentals of Radiation Chemistry and Radiation-induced Polymerization
	and Grafting
9	Radiation-induced Crosslinking and Degradation.
9	Radiation Synthesis of Nanoparticles and Nanocomposites
9	Radiation for Emerging Applications in Nanotechnology and Health care
TESTI CONSIGLIATI	 Robert J.Woods, Alexei K. Pikaev "Applied radiation Chemistry . Radiation Processing" Wiley & Sons Materiale fornito dal docente