FACOLTÀ	Economia
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA	Statistica per l'Analisi dei Dati
INSEGNAMENTO	Statistica 4
TIPO DI ATTIVITÀ	Caratterizzante (TAF B)
AMBITO DISCIPLINARE	Statistico Metodologico
CODICE INSEGNAMENTO	04272
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	SECS-S/01
DOCENTE RESPONSABILE	Angelo Mineo
	Professore Ordinario
	Università di Palermo
CFU	8
NUMERO DI ORE RISERVATE ALLO	128
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	72
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Statistica 3
ANNO DI CORSO	Terzo
SEDE DI SVOLGIMENTO DELLE	Facoltà di Economia
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni nel laboratorio
MODALIE DI EDEGLIENZA	informatico.
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale
	X7
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ DIDATTICHE	Vedi Calendario didattico
ORARIO DI RICEVIMENTO DEGLI	Martedì 10-12; Venerdì 10-12.
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Conoscenza dei modelli lineari;

Conoscenza dell'Analisi dei gruppi e dell'analisi discriminante;

Conoscenza dei metodi per risolvere numericamente problemi di minimo e di massimo non vincolato

Conoscenza delle modalità per effettuare uno studio di simulazione;

Conoscenza essenziale dell'algoritmo EM e degli algoritm stocastici MCMC.

Capacità di applicare conoscenza e comprensione

Capacità di utilizzare i modelli lineari;

Capacità di risolvere numericamente problemi di minimo e di massimo non vincolato

Capacità nel condurre uno studio di simulazione statistica;

Capacità di utilizzare le tecniche descrittive relative all'analisi dei gruppi e all'analisi discriminante;

Capacità di utilizzare l'algoritmo EM e di capire un algoritmo di tipo MCMC.

Autonomia di giudizio

Lo studente deve essere in grado di utilizzare criticamente i metodi visti durante il corso. Lo studente deve inoltre saper impostare uno studio di simulazione statistica e di saper stimare i parametri di una distribuzione qualsiasi utilizzando, se necessario, metodi di ottimizzazione non vincolata.

Abilità comunicative

Essere in grado di redigere un rapporto tecnico con diversi livelli di approfondimento a seconda dell'ambito applicativo e del destinatario; esporre oralmente quanto contenuto nel rapporto scritto modulando il linguaggio e il formalismo a seconda del destinatario.

Capacità d'apprendimento

Essere in grado di consultare la letteratura scientifica nazionale e internazionale; distinguere i testi a seconda dell'ambito applicativo e del loro contenuto statistico, rielaborare quanto appreso attraverso l'adattamento alle condizioni e ai limiti imposti dal tipo di problema da risolvere.

Obiettivi formativi del corso

Il corso ha come obiettivo fondamentale di offrire allo studente gli strumenti per completare le conoscenze acquisite nei primi due anni del Corso di Laurea in ambito metodologico. Alla fine del corso lo studente dovrà essere in grado di scrivere relazioni di tipo statistico, dopo avere compiutamente effettuato l'analisi dei dati a disposizione scegliendo le tecniche descrittive o inferenziali più opportune.

Conoscenze propedeutiche

Variabili aleatorie discrete e continue: distribuzione di probabilità, funzione di ripartizione e funzione di densità.

Funzione di ripartizione e densità di variabili aleatorie bidimensionali. Principali proprietà degli stimatori, metodi per ottenere stimatori, stima intervallare, la verifica di ipotesi.

Materiale didattico

Il materiale didattico consisterà in dispense e lucidi forniti dal docente.

Per maggiori approfondimenti si indicano le seguenti fonti bibliografiche:

Chiodi M. (2000) Tecniche di Simulazione in Statistica. RCE.

Venables W.N., Ripley B.D. (2002) Modern Applied Statistics with S. Springer.

Everitt B. (2005) An R and S-PLUS Companion to Multivariate Analysis. Springer.

Rencher A.C. (2002) Methods of Multivariate Analysis. Wiley.

Everitt B., Landau S., Leese M. (2001) Cluster Analysis. Arnold.

	STATISTICA 4
ORE FRONTALI	LEZIONI FRONTALI
8	Modelli lineari: Analisi della varianza a una, due e più vie; test post-hoc
8	Cenni sull'analisi dei gruppi e sull'analisi discriminante
4	Risoluzione di equazioni trascendenti
4	Problemi di minimo e massimo non vincolato
15	Simulazioni in Statistica
6	Cenni sull'algoritmo EM e sugli algoritmi MCMC
ESERCITAZIONI	
4	Analisi di modelli lineari in R.
6	Metodi di analisi dei gruppi e di analisi discriminante in R
3	Esempi di risoluzione di equazioni trascendenti

2	Problemi di minimo e massimo non vincolato
8	Studi di simulazione con R
4	Codice in R per un algoritmo EM e MCMC