FACOLTÀ	Farmacia
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE A CICLO	Farmacia
UNICO	
INSEGNAMENTO	CHIMICA ORGANICA
TIPO DI ATTIVITÀ	BASE
AMBITO DISCIPLINARE	Discipline Chimiche
CODICE INSEGNAMENTO	01933
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/06
DOCENTE RESPONSABILE	Silvestre Buscemi
	Professore Ordinario
	Università di Palermo
CFU	10
NUMERO DI ORE RISERVATE ALLO	175
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	75
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica generale ed inorganica e laboratorio di
	chimica
	Gli studenti non potranno sostenere esami degli
	insegnamenti del secondo anno se non hanno
	acquisito almeno 24 cfu degli insegnamenti del
	primo. Non potranno sostenere esami del terzo anno
	se non hanno acquisito tutti i cfu degli insegnamenti
	del primo anno.
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO DELLE LEZIONI	Facoltà di Farmacia
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali ed Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa (vivamente consigliata)
METODI DI VALUTAZIONE	Verifica scritta e/o esame orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	primo semestre
CALENDARIO DELLE ATTIVITÀ	mar e gio 8.30-11; ven 11-12.30 aula A via Archirafi
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	ven 10-11 previo appuntamento telefonico o e-mail
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione degli strumenti per il riconoscimento di gruppi funzionali e delle loro proprietà, delle varie classi di composti e delle trasformazione ad esse associate.

Capacità di applicare conoscenza e comprensione

Capacità di razionalizzare la reattività dei gruppi funzionali ed elaborare in autonomia una reazione di trasformazione, allo scopo della progettazione di molecole di interesse farmaceutico.

Autonomia di giudizio

Capacità di razionalizzare e prevedere le possibili trasformazioni di composti organici di interesse biologico

e farmaceutico.

Abilità comunicative

Capacità di utilizzare il linguaggio specifico proprio della disciplina.

Capacità d'apprendimento

Capacità di comprensione dei meccanismi di reazione e loro applicazione in modelli biochimici, delle loro proprietà utili per la comprensione dell'azione dei farmaci e dei prodotti per la salute.

OBIETTIVI FORMATIVI DEL CORSO

Il corso si propone di fornire le basi di chimica organica (intese come reattività dei gruppi funzionali, studio dei meccanismi di reazione più comuni, principali classi di composti organici naturali) come supporto ai corsi specialistici successivi (Chimica Biologica, Chimica Farmaceutica, Farmacologia, Tecnica Farmaceutica, nonché per tutti i laboratori di analisi dei farmaci). Le linee-guida del programma e le ore previste sono di seguito riportate.

ORE FRONTALI	LEZIONI FRONTALI
2	Cenni su orbitali, legame chimico, elettronegatività, ibridazione e risonanza, forze
	intermolecolari ed acidi e basi secondo Bronsted e Lewis.
4	Alcani e Cicloalcani. Isomeri strutturali, Nomenclatura, Conformazioni.
	Reazioni del metano e degli alcani. Meccanismo radicalico dell'alogenazione.
	Orientamento dell'alogenazione. Struttura e stabilità dei radicali.
	Iperconiugazione
2	Stereochimica. Isomeria ottica. Attività ottica. Chiralità. Enantiomeri e
	racemi. Configurazione assoluta R ed S. Formazione di un centro chirale.
	Reazioni riguardanti molecole chirali. Composti con più centri chirali.
	Diastereoisomeri. Strutture meso
2	Alogenuri alchilici. Metodi di preparazione. Meccanismo e confronto della
	SN ₂ e SN ₁ . Carbocationi
6	Alcheni. Doppio legame etilenico. Isomeria geometrica. Calori di
	idrogenazione e stabilità degli alcheni. Metodi di preparazione:
	deidroalogenazione degli alogenuri alchilici, disidratazione degli alcoli,
	dealogenazione. Reazioni di □-eliminazione E ₁ ed E ₂ : meccanismo, cinetica,
	stereochimica. Eliminazione secondo Saytzeff e secondo Hofmann. Reazioni di addizione al doppio legame: addizione di alogeni, di acidi alogenidrici, di
	acqua. Ossimercuriazione. Idroborazione. Dimerizzazione ed alchilazione.
	Addizioni di carbeni: cicloaddizioni. Epossidazione, ossidrilazione, ozonolisi.
	Sostituzione radicalica e radicale allilico. Coniugazione e risonanza. <u>Dieni</u> .
	Isolati, cumulati e coniugati. Risonanza e stabilità dei dieni coniugati.
	Addizioni elettrofile 1,2 ed 1,4.
2	Alchini. Tripo legame. Metodi di preparazione. Acidità Reazioni di addizione.
	Riduzione. Addizione di alogeni ed acidi alogenidrici. Addizione di acqua:
	tautomeria cheto-enolica
6	Idrocarburi aromatici. Benzene: struttura e proprietà chimiche, stabilità ed energia di
	risonanza. Aromaticità ed eteroaromaticità. Sostituzione elettrofila aromatica (SEA):
	alogenazione, nitrazione, solfonazione, alchilazione ed acilazione di Friedel-Crafts.
	Meccanismo. Effetto dei sostituenti su reattività ed orientamento
2	Areni. Carbocatione benzilico Reazioni degli alchilbenzeni: alogenazione,
	ossidazione.
2	Alogenuri arilici e sostituzione nucleofila aromatica (SNA): meccanismo di
	addizione-eliminazione, meccanismo eliminazione-addizione via benzino
2	Fenoli. Acidità. Metodi di preparazione: fusione alcalina, idroperossido di

	cumene. Reattività. Reazione di Kolbe. Reazione di Reimar-Tiemann. Chinoni.
2	Alcoli. Acidità. Metodi di preparazione: Idrolisi di alogenuri alchilici,
	idratazione degli alcheni, idroborazione-ossidazione, ossimercuriazione-
	demercuriazione. Rottura del legame C-O: disidratazione intramolecolare,
	reazione con acidi alogenidrici, con cloruro di tionile ed alogenuri di fosforo.
	Ossidazione. Alcoli poliossidrilici
2	Eteri. Nomenclatura. Proprietà fisiche. Reattività. Metodi di preparazione:
	sintesi di Williamson, alcossimercuriazione. Rottura del legame etereo. Eteri
	ciclici. Epossidi: metodi di preparazione, reazioni di apertura dell'anello.
9	Gruppo carbonilico. Struttura e reattività. Addizione nucleofila e sostituzione
	nucleofila acilica. Acidità degli idrogeni □.
	Aldeidi e chetoni. Nomenclatura. Proprietà fisiche. Metodi di preparazione:
	ossidazione degli alcoli e dei metilbenzeni, formilazione, riduzione dei cloruri acidi.
	Reazioni: ossidazione, riduzione. Reazioni di addizione di acqua, alcoli (emiacetali
	ed acetali, gruppo protettore), ammoniaca e derivati (immine ed enammine, ossime,
	idrazoni, semicarbazoni), acido cianidrico, bisolfito, acetiluri, composti
	organometallici (reattività e selettività). Geometria delle ossime e trasposizione di
	Beckmann. Condensazione aldolica. Alogenazione dei chetoni. Reazione aloformica.
6	Acidi carbossilici e loro derivati. Acidità. Sali. Metodi di preparazione: ossidazione
	degli alcoli, degli areni; idrolisi dei nitrili; carbonatazione dei reattivi di Grignard.
	Sintesi e reattività di cloruri acilici, anidridi, ammidi, esteri e tioesteri. Sostituzione
	nucleofila acilica. Idrolisi acida e basica degli esteri. Transesterificazione. Lattami e
	lattoni. Ossiacidi. Anidridi cicliche ed immidi. Reazione di □-alogenazione. Acidi bicarbossilici.
2	
2	Composti - dicarbonilici. Condensazione di Claisen. Sintesi acetacetica dei chetoni.
	Sintesi malonica. Acido barbiturico. Composti carbonilici □,□- insaturi. Struttura e
4	proprietà. Addizione elettrofila e nucleofila.
4	Ammine. Basicità. Sali. Metodi di preparazione: riduzione dei composti azotati,
	ammonolisi degli alogenuri, amminazione riduttiva, sintesi di Gabriel, degradazione
	di Hofmann. Solfonammidi. Reazioni con acido nitroso. Sali di diazonio:
	struttura, stabilità, reazioni di sostituzione dell'azoto, reazioni di copulazione. Uso dei
	sali di diazonio nelle sintesi organiche.
4	Chimica dei Composti Eterocicli. Eterocicli aromatici a cinque e sei termini con uno
	e due o più eteroatomi; eterocicli aromatici ad anelli condensati; eterocicli non
	aromatici. Nomenclatura Acidità e basicità. Equilibri tautomerici. Reazioni di
	sostituzione elettrofila e nucleofila. Sintesi: reazioni di ciclizzazione, reazioni di
	cicloaddizione (cenni).
6	Composti naturali contenenti ossigeno e/o azoto. Carboidrati. Classificazione.
	Monosaccaridi. Struttura. Stereochimica. Configurazione relativa (D, L). Forme
	emiacetaliche, anomeri, mutarotazione. Ribosio, glucosio, galattosio, fruttosio.
	Chimica dei monosaccaridi. Disaccaridi: Maltosio, cellobiosio, lattosio, saccarosio.
	Polisaccaridi: amido, glicogeno, cellulosa. Amminoacidi.e proteine Struttura.
	Costanti di dissociazione acida e basica. Punto isoelettrico. Configurazione. Metodi
	di preparazione. Legame peptidico. Aspetti strutturali e sintesi dei peptidi. Lipidi.
	Grassi, terpeni, steroidi, vitamine liposilubili
2	Fotochimica. Spettri di emissione: fluorescenza e fosforescenza. Proprietà degli stati
_	eccitati. Esempi di reazioni fotochimiche in chimica organica.
	ESERCITAZIONI IN AULA
	Dankt H A Zittivi H A A H A

8	Esercitazioni in aula aventi come oggetto la conoscenra delle trasformazioni dei	
	singoli gruppi funzionale e la capacità di individuare le vie sintetiche più opportune	
	finalizzate alla sintesi di composti organici di possibile interesse farmaceutico.	
TESTI BROWN, FOOTE E INVERSON - Chimica Organica (terza edizione)- Ed		
CONSIGLIATI	BROWN – Guida alla soluzione dei problemi di Chimica Organica - EdiSES	
	D'AURIA, TAGLIATELA SCAFATI, ZAMPELLA – Guida ragionata allo	
	svolgimento di esercizi di chimica organica – Ed. Loghia	
	Dispense di parti di programma	