STRUTTURA	Scuola Politecnica - DEIM		
ANNO ACCADEMICO	2014/2015		
CORSO DI LAUREA	INGEGNERIA ELETTRICA – POLO DI		
	CALTANISSETTA		
INSEGNAMENTO	FISICA TECNICA		
TIPO DI ATTIVITÀ	Affine		
AMBITO DISCIPLINARE	Attività formative affini o integrative		
CODICE INSEGNAMENTO	03318		
ARTICOLAZIONE IN MODULI	NO		
NUMERO MODULI	1		
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/11		
DOCENTE RESPONSABILE	ANTONINO D'ORSO		
	RICERCATORE		
	UNIVERSITA' DI PALERMO		
CFU	6		
NUMERO DI ORE RISERVATE ALLO	102		
STUDIO PERSONALE			
NUMERO DI ORE RISERVATE ALLE	48		
ATTIVITÀ DIDATTICHE ASSISTITE			
PROPEDEUTICITÀ	Nessuna.		
ANNO DI CORSO	PRIMO		
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it		
LEZIONI			
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali; Esercitazioni in aula.		
MODALITÀ DI FREQUENZA	Facoltativa.		
METODI DI VALUTAZIONE	Prova Orale		
TIPO DI VALUTAZIONE	Voto in trentesimi.		
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it		
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it		
DIDATTICHE			
ORARIO DI RICEVIMENTO DEGLI	Mercoledì 14:00-15:00; 19:00-19:30		
STUDENTI			

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente avrà acquisito conoscenze e metodologie per affrontare e risolvere le problematiche relative alla qualità delle varie forme di energia ed ai problemi del trasferimento del calore

Capacità di applicare conoscenza e comprensione

Lo studente avrà acquisito conoscenze e metodologie per analizzare e risolvere problemi tipici dell'analisi delle prestazioni energetiche dei cicli termodinamici e del dimensionamento dei componenti termici, per impostare e risolvere semplici problemi di trasmissione del calore e per dimensionare scambiatori di calore.

Autonomia di giudizio

Lo studente avrà acquisito una metodologia di analisi della qualità energetica dei processi di trasformazione dell'energia e dell'efficacia dei possibili interventi migliorativi, una capacità valutativa delle tecniche di isolamento termico e di smaltimento del calore.

Abilità comunicative

Lo studente sarà in grado di comunicare con proprietà di linguaggio specifico sulle leggi fisiche riguardanti l'utilizzazione dell'energia termica ai fini della produzione di energia meccanica, la trasmissione del calore; sarà in grado di esporre con proprietà di linguaggio specifico le tecniche di isolamento e di smaltimento del calore.

Capacità d'apprendimento

Lo studente sarà in grado di affrontare in autonomia più di una problematica complessa relativa alla utilizzazione pratica delle leggi della termodinamica e del trasferimento di calore.

OBIETTIVI FORMATIVI

Obiettivo del corso è l'acquisizione delle conoscenze di quelle parti della fisica generale, che sono alla base della gestione e della trasformazione dell'energia termica, ossia la termodinamica e il trasferimento di calore.

L'approccio allo studio della termodinamica è di tipo prevalentemente energetico e mira all'ottimizzazione della trasformabilità dell'energia termica in energia meccanica. Dopo avere acquisito i concetti generali riguardanti la valutazione dello stato termodinamico delle sostenze ideali e reali, ed avere affrontato gli aspetti quantitativi e qualitativi inerenti l'energia (primo e secondo principio della termodinamica), vengono studiati i cicli termo motori con particolare riguardo al ciclo a vapore.

Vengono, quindi, affrontati gli aspetti relativi alla trasmissione del calore e delle tecniche per accrescere o ridurre gli scambi termici tra le superfici in disequilibrio di temperatura.

	FISICA TECNICA			
ORE FRONTALI	LEZIONI FRONTALI			
1	Presentazione dell'insegnamento, delle discipline trattate e degli obiettivi			
3	Concetti fondamentali della termodinamica, grandezze ed unità di misura			
3	Proprietà delle sostanze pure; cambiamenti di fase; equazioni di stato; diagrammi di stato			
3	Primo principio della termodinamica: i sistemi chiusi. Energia interna.			
3	Primo principio della termodinamica: i volumi di controllo. Valvole di laminazione, turbine e turbocompressori; ugelli e diffusori.			
3	Secondo principio della termodinamica. Ciclo di Carnot. Rendimento termodinamico.			
3	Diseguaglianza di Clausius. Entropia; diagramma T-S			
4	Cicli diretti e cicli inversi; Ciclo Otto; Ciclo Diesel; Ciclo Rankine; macchine frigorifere e pompe di calore; proprietà dei refrigeranti			
3	Modalità di trasmissione del calore. Trasmissione del calore per irraggiamento; corpo nero. Fattori di vista. Irraggiamento tra superfici grigie e diffondenti.			
4	Convenzione naturale e forzata; conduzione in regime stazionario; postulato di Fourier; trasmissione attraverso strati piani, attraverso strati cilindrici e sferici; isolanti; tecniche di isolamento; raggio critico di isolamento			
3	Il problema della sbarra; metodi di smaltimento del calore: superfici alettate			
3	Scambiatori di calore; circolazione semplice e circolazione inversa			
	ESERCITAZIONI			
2	Esercizi sulle trasformazioni relative a gas perfetti.			
2	Esercizi sulle trasformazioni relative a vapor d'acqua; uso dei diagrammi, calcolo dell'entalpia e dell'entropia, calore di vaporizzazione, riscaldamento dell'acqua per miscelazione			
6	Esercizi sulla trasmissione del calore; strati piani, strati cilindrici, camera d'aria; scambiatori.			
TESTI CONSIGLIATI	 Çengel- Termodinamica e Trasmissione del calore- McGraw Hill G. Rodonò, R. Volpes Termodinamica e trasmissione del calore 2 voll. Dario Flaccovio Ed. Palermo 			