FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE	Ingegneria Meccanica
INSEGNAMENTO	Simulazione numerica per l'ingegneria
	meccanica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Meccanica
CODICE INSEGNAMENTO	06435
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/14
DOCENTE RESPONSABILE	Antonio Pantano
	P.A.
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	135
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	90
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Laurea in Ingegneria Meccanica
ANNO DI CORSO	I
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale, Presentazione di una raccolta di
	esercitazioni assegnate durante il corso
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito www.ingegneria.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Consultare il sito www.ingegneria.unipa.it
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

• Lo studente, al termine del corso, avrà acquisito conoscenze e metodologie per affrontare e risolvere in maniera originale problematiche d'ingegneria meccanica tramite metodi di simulazione numerica. Lo studente inoltre acquisirà le conoscenze per risolvere problematiche d'ottimizzazione tramite simulazione numerica.

Capacità di applicare conoscenza e comprensione

• Lo studente avrà acquisito conoscenze e metodologie per analizzare, risolvere e ottimizzare problemi tipici della progettazione con l'ausilio di metodi numerici.

Autonomia di giudizio

• Lo studente avrà acquisito una metodologia d'analisi propria nell'utilizzo del metodo degli elementi finiti per simulare problemi d'interesse ingegneristico.

Abilità comunicative

• Lo studente sarà in grado di comunicare con competenza e proprietà di linguaggio a proposito di problematiche complesse di simulazione numerica per l'ingegneria meccanica.

Capacità d'apprendimento

• Lo studente sarà in grado di affrontare in autonomia più di una problematica relativa all'utilizzo di tecniche numeriche per l'ingegneria meccanica. Sarà in grado di approfondire tematiche complesse riguardo all'utilizzo del metodo degli elementi finiti e l'ottimizzazione.

OBIETTIVI FORMATIVI

Lo studente, al termine del corso, avrà acquisito conoscenze e metodologie pratiche per analizzare, risolvere e ottimizzare problemi tipici della progettazione con l'ausilio di metodi numerici. Sarà in grado di analizzare risultati di simulazioni condotte e di affinare modelli numerici al fine di ottenere risultati accurati.

ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione al corso. Metodi di analisi strutturale. Richiami di teoria della
	elasticità. Panoramica dei metodi di risoluzione.
2	Metodo degli spostamenti.
4	Funzione di spostamento nell'elemento; equazioni di equilibrio dell'elemento
	e della struttura, condizioni al contorno, calcolo degli spostamenti e delle
	tensioni, criteri di convergenza; funzione di spostamento alle coordinate
	generalizzate e relazione con la forma dell'elemento.
3	Elementi monodimensionali, membranali, piastra, guscio, solidi tetraedri e
	parallelepipedi.
4	Determinazione diretta della funzione di spostamento, elemento
	isoparametrico, convergenza dell'elemento isoparametrico, integrazione
	numerica; criteri di discretizzazione; elementi gerarchici;il metodo degli EF
	nei problemi di campo stazionario; analisi non lineare; cenni sui metodi di
	soluzione di problemi dinamici non lineari: metodi di integrazione implicita
	ed esplicita.
28	Utilizzazione di codici commerciali basati sul FEM in: analisi di strutture
	intelaiate (aste o travi), piane, assialsimmetriche, solide, discretizzabili
	tramite elementi guscio; analisi di strutture in composito; problemi con
	nonlinearità geometrica; problemi di instabilità meccanica; problemi con
	nonlinearità del materiale; problemi di contatto; analisi di problemi termici e
	termomeccanici; analisi tramite elementi gerarchici; analisi modali; analisi
	della risposta armonica; analisi di transitorio dinamico; analisi di fatica;
	analisi diretta di problemi accoppiati tramite elementi speciali aventi tutti i
	gradi di libertà necessari (esempio risoluzione diretta di un problema elettro-
	termo-meccanico); meshing adattativo; problemi di propagazione di onde.
3	Ottimizzazione. Introduzione. Tecniche di ottimizzazione: direzione
	ammissibile, modello analitico approssimato, algoritmi genetici. Calcolo del
	minimo non condizionato, funzioni di penalità. Applicazioni tramite l'utilizzo di codici commerciali basati sul FEM.
1	
4 8	Introduzione alla realizzazione di programmi FEM Metodo degli elementi di contorno: generalità tecnica degli elementi di
o	Metodo degli elementi di contorno: generalità, tecnica degli elementi di contorno, utilizzazione di soluzioni singolari, problemi interni ed esterni,
	metodi diretti ed indiretti, metodo diretto degli integrali di contorno, teorema
	di reciprocità, proprietà delle soluzioni test, coefficienti di influenza per il
	calcolo sul contorno; calcolo nei punti interni, formule di Somigliana; criteri
	di discretizzazione; struttura di un programma ai BE; analisi di strutture piane
	ed assialsimmetriche in campo lineare.
1	Modellazione parametrica.
1	Principi di progettazione metodica; Esempi applicativi.
	1 1 0 · · · · · · · · · · · · · · · · ·

1	Similitudine strutturale - determinazione delle leggi di similitudine meccanica per alcuni casi di sollecitazioni.
	per aream east at someonazioni.
	ESERCITAZIONI
3	Elementi monodimensionali
18	Utilizzazione di codici commerciali basati sul FEM in: analisi di strutture intelaiate (aste o travi), piane, assialsimmetriche, solide, discretizzabili tramite elementi guscio; analisi di strutture in composito; problemi con nonlinearità geometrica; problemi di instabilità meccanica; problemi con nonlinearità del materiale; problemi di contatto; analisi di problemi termici e termomeccanici; analisi tramite elementi gerarchici; analisi modali; analisi della risposta armonica; analisi di transitorio dinamico; analisi diretta di problemi accoppiati tramite elementi speciali aventi tutti i gradi di libertà necessari (esempio risoluzione diretta di un problema elettro-termomeccanico); meshing adattativo; problemi di propagazione di onde.
2	
3	Ottimizzazione. Applicazioni tramite l'utilizzo di codici commerciali basati sul FEM.
3	Esercitazioni sull'utilizzo del Metodo degli Elementi di Contorno
3	Introduzione alla realizzazione di programmi FEM
TESTI CONSIGLIATI	F. Cappello, A. Pantano: "Metodo degli Elementi Finiti - Corso in Simulazione Numerica per l'Ingegneria Meccanica " - Rapp. Int. del Dip. di Meccanica, 2012. G.Belingardi: "Principi e metodologie della progettazione meccanica", Levrotto & Bella, 1995 O.C. Zienkiewicz, R.L. Taylor: "The finite element method" - McGraw Hill Book Company, London, 1989 J. N. Reddy: "An Introduction to the Finite Element Method", McGraw Hill Book Company, London, 1993. S.L. Crouch, A.M. Starfield: "Boundary element meth. in solid mechan.", G. Allen & Unwin, London, 1983 V. Hubka, W.E. Eder: "Design science" – Springer, London, 1992.