SCUOLA	delle Scienze di Base e Applicate
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA MAGISTRALE A	Chimica e Tecnologia Farmaceutiche - 2013
CICLO UNICO	
INSEGNAMENTO	Gruppo attività formative opzionali:
	Biochimica Applicata
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline biologiche e farmacologiche
CODICE INSEGNAMENTO	01548
ARTICOLAZIONE IN MODULI	No
SETTORI SCIENTIFICO DISCIPLINARI	BIO/10
DOCENTE RESPONSABILE	Annamaria Pintaudi
	Ricercatore
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	105
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	45
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Biochimica
ANNO DI CORSO	IV
SEDE DI SVOLGIMENTO DELLE	Dipartimento di STEBICEF
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	secondo semestre
CALENDARIO DELLE ATTIVITÀ	http://offweb.unipa.it/
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	lun mar e mer 10-14
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente avrà acquisito i principi che sono alla base delle metodologie e delle tecniche utilizzate nella ricerca biochimica e biomolecolare.

Capacità di applicare conoscenza e comprensione

Lo studente dovrà avere sviluppato la capacità di scegliere ed applicare le tecniche di analisi più appropriate alla risoluzione di problemi di ricerca biochimica e biomolecolare.

Autonomia di giudizio

Lo studente dovrà essere in grado di valutare i risultati dei procedimenti separativi ed analitici applicati per la soluzione di quesiti sperimentali

Abilità comunicative

Lo studente dovrà essere in grado di esporre in maniera corretta, semplice e sintetica i risultati delle applicazioni metodologiche adottate alla soluzione di problemi di ricerca biochimica e biomolecolare

Capacità d'apprendimento

Lo studente dovrà avere sviluppato quelle capacità di apprendimento che gli consentano di

aggiornare il proprio bagaglio di conoscenze attraverso la consultazione di bibliografia scientifica aggiornata. Inoltre dovrà avere la capacità di frequentare master di secondo livello e seminari o corsi di specializzazione del settore.

OBIETTIVI FORMATIVI DEL CORSO

Il corso si prefigge di studiare i principi che sono alla base delle metodologie e tecniche utilizzate nella ricerca biochimica e biomolecolare; descrivere le loro applicazioni nella risoluzione di problemi sperimentali; affrontare le tecnologie che costituiscono la frontiera più avanzata nella sperimentazione biochimica e biotecnologica.

CORSO	Biochimica Applicata
ORE FRONTALI	LEZIONI FRONTALI
8	Modelli di sperimentazione biologica: Animale intero, organi perfusi, sezioni di tessuto. Soluzioni tampone. Colture cellulari: il laboratorio per colture di cellule; metodi di coltura di cellule e animali; medium di coltura; separazione ed analisi delle popolazioni di cellule; conteggio e conservazione; citometria a flusso, FACS e MACS.
8	Sistemi di omogeneizzazione meccanici e non meccanici. Centrifugazione: principi della sedimentazione; ultracentrifuga preparativa ed analitica e loro applicazioni; velocità ed equilibrio di sedimentazione; centrifugazione su gradiente di densità; centrifugazionale zonale ed isopicnica. Cromatografia: principi generali di ripartizione; teoria e pratica della cromatografia a scambio ionico; ad esclusione molecolare; di affinità.
6	Elettroforesi: principi e fattori che regolano la migrazione di una biomolecola in un campo elettrico. SDS-PAGE; Elettroforesi degli acidi nucleici. Isoelectrofocusing. Elettroforesi capillare diretta e micellare. Metodi di rivelazione colorimetrici ed immunologici di proteine elettroforetizzate.
6	Metodi in biologia molecolare: Estrazione degli acidi nucleici; Southern e Northen blott.; Metodi di marcatura delle sonde di ibridizzazione; enzimi impiegati in ingegneria genetica; clonaggio mediante plasmidi, cosmidi, cromosoma YAC. PCR e caratteristiche dei primer; RT-PCR; Real time-PCR. Sequenziamento di Sanger.
5	Spettroscopia: principi dell'interazione radiazioni elettromagnetiche/materia. Spettrofotometria visibile ed UV: aspetti teorici, strumentazione ed applicazioni nella ricerca biochimica. Spettrofluorimetria.
6	Applicazioni metodologiche allo studio delle biomolecole: Determinazione del peso molecolare delle proteine. Principi di purificazione enzimatica e principali tecniche di dosaggio enzimatico.
6	L'immunochimica: principi biologici della reazione antigene-anticorpo. L'immunoprecipitazione e l'immunoelettroforesi. Tecniche immunoenzimatiche (ELISA): ELISA diretto, indiretto, sandwich. Utilizzo dell'Elisa per dosaggi quantitativi di Ag ed Ab in campioni biologici.
TESTI CONSIGLIATI	Wilson K., Walzer J.: Biochimica e biologia molecolare: principi e tecniche. Ed. Raffaello Cortina Editore. Ninfa A.J., Ballou D.P.: Metodologie di base per la biochimica e la biotecnologia. Ed. Zanichelli.