FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE	Scienze e Tecnologie Geologiche
INSEGNAMENTO	Metodi Geofisici per l'esplorazione del
	sottosuolo
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline geofisiche
CODICE INSEGNAMENTO	15305
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	GEO/11
DOCENTE RESPONSABILE	Raffaele Martorana
	Ricercatore
	Università degli Studi di Palermo
CFU	4+1+1
NUMERO DI ORE RISERVATE ALLO	86
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	64
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Aula Macaluso, Via Archirafi 20
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Escursioni
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Lunedì-venerdì 12.00-13.30
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedì 15.00-16.00.
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

- conoscenze di base, di tipo teorico, sperimentale e pratico, fondamentali nelle discipline geofisiche:
- sufficiente familiarità con il metodo scientifico d'indagine;
- capacità di utilizzare gli strumenti matematici e sperimentali per l'analisi di processi geologici da un punto di vista fisico;

Capacità di applicare conoscenza e comprensione

Gli studenti del corso saranno in possesso di conoscenze idonee a svolgere attività lavorativa in diversi ambiti delle Scienze della Terra applicati al Territorio con metodi geofisici. Tali professionalità potranno trovare applicazione in Enti Pubblici, istituzioni, aziende, società, studi professionali.

Autonomia di giudizio

Gli studenti del corso acquisiranno competenze adeguate per la progettazione di campagne d'indagine geofisica e formulazione di modelli interpretativi dei risultati ottenuti.

Abilità comunicative

Gli studenti del corso acquisiranno capacità di lavorare in gruppo e di inserirsi prontamente negli

ambienti di lavoro.

Capacità d'apprendimento

Le conoscenze acquisite e la capacità di apprendimento sviluppata risulteranno utili per affrontare materie di indirizzo e corsi di livello superiore (Master, Dottorati di Ricerca). La formazione acquisita permetterà anche di incrementare le proprie conoscenze con aggiornamenti autonomi. I **risultati di apprendimento attesi** vengono sviluppati durante tutto il percorso formativo attraverso lezioni frontali, esercitazioni e attività di laboratorio. Il livello ed il grado di apprendimento saranno valutati mediante esame di profitto.

OBIETTIVI FORMATIVI DEL MODULO

Obiettivo del modulo è fornire una solida cultura di base fisico-matematica e tecnica applicata a problematiche geofisiche sperimentali per l'esplorazione del sottosuolo. La preparazione dello studente verterà sui principali metodi di indagine e tecniche di misura geofisiche applicate alle problematiche geologiche. Lo studente acquisirà conoscenze sulle principali strumentazioni geofisiche in commercio e sul loro principio di funzionamento. Particolare riguardo verrà dato alle nuove metodologie sismiche, elettriche ed elettromagnetiche. Inoltre verranno trattati cenni sui metodi magnetometrici, gravimetrici, e sulle sonde geofisiche da foro.

metodi magnetometrici, gravimetrici, e sulle sonde geofisiche da foro.		
	METODI GEOFISICI PER L'ESPLORAZIONE DEL SOTTOSUOLO	
ORE FRONTALI	LEZIONI FRONTALI	
3	Il problema diretto ed il problema inverso in geofisica	
	Tecniche 2D e 3D di acquisizione dati, modellistiche e dimensioni, problema	
	diretto. Problema dinverso: fasi che regolano un algoritmo di inversione.	
6	Tomografia elettrica	
	Strumenti di misura della resistività elettrica. Resistivimetri monocanale e	
	multicanale. Transmitter e receiver.	
	Pseudosezioni e sezioni tomografiche. Tecniche di acquisizione di dati 2D e	
	3D; tecnica del <i>roll-along</i> . Il problema geoelettrico diretto 2D e 3D. Cenni	
	sulla soluzione del problema con il metodo alle differenze finite e con il	
	metodo agli elementi finiti. La funzione di sensibilità. Discretizzazione del	
	volume indagato. Metodi d'inversione 2D e 3D con soluzione del problema	
	inverso: metodi ai minimi quadrati di Gauss-Newton. Tecniche a	
	smussamento obbligato (smoothness constrain) o a blocchi. Applicazioni	
	della tomografia elettrica a ricerche idrogeologiche, archeologiche ed	
	ingegneristiche.	
3	Polarizzazione indotta	
	Polarizzazione di elettrodo e di membrana. Misure di P.I. nel time domain.	
	Caricabilità. Misure di P.I. in frequency domain. Effetto frequenza.	
	Differenza di fase.	
6	Prospezione sismiche di superficie	
	Richiami di teoria delle onde elastiche.	
	Sismica a rifrazione: Metodo reciproco, metodo plus minus, metodo GRM,	
	ventaglio sismico, down hole, up hole e cross hole.	
	Metodi sismici ad onde di superficie (MASW, SASW, REMI)	
	Sorgenti sismiche. Geofoni ed idrofoni. Sismometri e sismografi. Data	
	logger. OBS	
4	I metodi elettromagnetici impulsivi	
	Panoramica dei metodi elettromagnetici impulsivi. Il Ground Penetrating	
	Radar (georadar). Caratteristiche dello strumento e principi di	
	funzionamento. Acquisizione, elaborazione ed interpretazione dei dati.	
	Antenne trasmittenti e riceventi. Scelta della frequenza dell'antenna.	
	Considerazioni sulle prospezioni G.P.R. Limiti delle prospezioni G.P.R.	

	Tecniche d'acquisizione. Restituzione di un profilo georadar. Tecniche di
	elaborazione dei dati georadar e confronto con la sismica a rifrazione.
	Tomografia georadar: time-slices e depth-slices. Acquisizione 3D dei profili
	georadar, elaborazione dei dati e costruzione di una time-slice.
	Interpretazione. Esempi applicativi.
6	I metodi elettromagnetici induttivi.
	Panoramica dei metodi elettromagnetici induttivi. Metodi elettromagnetici nel
	dominio del tempo o della frequenza.
	Il metodo TDEM. Principi fisici del metodo. Equazione del potenziale
	elettromagnetico indotto. Curva di decadimento del potenziale (early,
	intermediate e late stage). Configurazioni geometriche. Elaborazione dei dati.
	Curve di resistività apparente. Tecniche d'inversione ed interpretazione dei
	dati. Confronto tra il metodo TDEM ed i sondaggi elettrici verticali.
	Applicazione del metodo ad indagini idrogeologiche.
	Strumentazione ed esempi applicativi: Il sistema Transmitter-Receiver Zonge.
	Il TEM-FAST. Applicazione del metodo ad indagini idrogeologiche.
	Il metodo Slingram. Anomalie generate da un profilo Slingram. Esempi
	applicativi. Il metodo VLF. Reti di stazioni VLF. Vantaggi e limiti del VLF.
	Strumentazione. Cenni sugli altri metodi elettromagnetici induttivi.
4	I log geofisici in foro
	Definizione di well-logging. Parametri investigati dai log in foro. Esecuzione
	di un Well-logging. Vantaggi e svantaggi. Log di potenziale spontaneo.
	Potenziale di membrana e di diffusione. Log di resistenza a punto singolo.
	Log di resistività normale. Log Caliper. Log elettromagnetici. Log radioattivi
	(natural gamma, spectral gamma e gamma-gamma). Log sonici. Cenni su altri
	tipi di log. Strumentazione. Esempi applicativi.
	LABORATORIO
4	Esecuzione sul campo di una tomofrafia elettrica 2D
4	Elaborazione ed interpretazione di tomografie elettriche
4	Esecuzione sul campo di un profilo sismico a rifrazione e di un sondaggio
	MASW
4	Elaborazione ed interpretazione di dati sismici a rifrazione e MASW
4	Esecuzione sul campo di profili georadar
4	Elaborazione ed interpretazione di sezioni georadar
4	Esecuzione sul campo di sondaggi elettromagnetici TDEM
4	Elaborazione ed interpretazione di dati TDEM
TESTI	Dispense del corso fornite dal docente
CONSIGLIATI	Daniels D. J. (1986): Surface-penetrating Radar. The Institution of Electrical Engineers,
	London, 300 pp. Grant F.S. e West G.F. (1965): <i>Interpretation Theory in Applied Geophysics</i> . Mc Graw -
	Hill, New York, 583 pp.
	Loke M. H. (2001): Tutorial: 2-D and 3-D electrical imaging surveys. Dr. M.H.Loke. 129
	pp.
	Menke, W. (1984): Geophysical data analysis: discrete inverse theory. Academic Press. Inc. Mussett A.E., Khan M.A. (2003): Esplorazione del sottosuolo. Una introduzione alla
	Geofisica Applicata Zanichelli, Bologna. 1a Edizione, 421 pp.
	Reynolds J. M. (1997): An introduction to Applied and Environmental Geophysics. J. Wiley
	& Sons, Chichester, 796 pp.
	Sharma P. V. (1997): Environmental and engineering geophysics. Cambridge University Press, Cambridge, 475 pp.
	Telford W. M., Geldart L. P., Sheriff R. E. (1976): Applied Geophysics 2ed. Cambridge
	Univ. Press, 860 pp.
· · · · · · · · · · · · · · · · · · ·	