STRUTTURA	Scuola Politecnica - DICGIM
ANNO ACCADEMICO	2014-2015
CORSO DI LAUREA MAGISTRALE	Ingegneria Chimica
INSEGNAMENTO	Reattori Chimici
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Chimica
CODICE INSEGNAMENTO	06205
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/24
DOCENTE RESPONSABILE	Vittorio Loddo
	Ricercatore confermato
	Università di Palermo
CFU	9
NUMERO DI ORE RISERVATE ALLO	144
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	55 (lezioni frontali)
ATTIVITÀ DIDATTICHE ASSISTITE	26 (esercitazioni numeriche)
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
	Esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta
	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni della settimana dalle 15 alle 16
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente, al termine del corso, avrà acquisito conoscenze e metodologie per affrontare e risolvere in maniera originale problematiche di modellazione cinetica di sistemi reagenti e di modellazione di reattori omogenei ed eterogenei.

Capacità di applicare conoscenza e comprensione

Lo studente avrà acquisito conoscenze e metodologie per l'interpretazione di dati cinetici e per la progettazione ottimale di reattori chimici omogenei ed eterogenei.

Autonomia di giudizio

Lo studente avrà acquisito una metodologia utile per la corretta pianificazione e conduzione di esperimenti per la determinazione di cinetiche di reazioni semplici e complesse e per la individuazione di scostamenti dalla idealità in reattori di impianto.

Abilità comunicative

Lo studente sarà in grado di comunicare con competenza e proprietà di linguaggio problematiche di sistemi di reazione anche complessi in contesto industriale.

Capacità d'apprendimento

Lo studente sarà in grado di affrontare in autonomia qualsiasi problematica relativa alla progettazione e conduzione dei reattori chimici nonché alla pianificazione di esperimenti da laboratorio volti all'indagine cinetica di sistemi reagenti in cui il trasporto di materia e di calore può diventare determinante.

OBIETTIVI FORMATIVI DELL'INSEGNAMENTO

Il corso é strutturato per fornire allo studente informazioni di cinetica chimica applicata da utilizzare per la corretta progettazione dei reattori chimici reali. Vengono utilizzate le conoscenze della Termodinamica Chimica e quelle riguardanti i fenomeni di trasporto di calore, materia e quantità di moto, e. Alla fine del corso lo studente dovrà saper risolvere un problema di progettazione e di conduzione di un reattore chimico.

Il corso si articola nei seguenti argomenti generali. Cinetica chimica applicata. Definizioni della cinetica chimica: grado di avanzamento, capacità di avanzamento, conversione e velocità di reazione. Reazioni in fase liquida. Reazioni catalitiche omogenee. Analisi dei dati di velocità di reazione. Il metodo integrale. Il metodo differenziale. Sistemi di reazione complessi. Reazioni in parallelo, reazioni in serie e reazioni in serie-parallelo. Reazioni enzimatiche. Reattori chimici ideali. Reattore discontinuo, reattore semicontinuo, reattore tubolare con flusso a pistone, reattore continuo a perfetta miscelazione, reattore con riciclo. Equazioni di progetto dei reattori ideali. Bilanci di materia e di energia. Regime transitorio di reattori continui. Ottimizzazione di reattori ideali. Ottimizzazione di reazioni complesse. Progetto di reattori non isotermici. Ottimizzazione termica dei reattori continui. Ottimizzazione termica di reazioni complesse. Flusso non ideale. Deviazioni dalle condizioni di flusso ideale. La curva F(t). La funzione di distribuzione dei tempi di residenza. Modello a dispersione assiale. Modello dei reattori CSTR in serie. Modelli a due parametri aggiustabili. Reattori per sistemi reagenti eterogenei. Modello della conversione progressiva e del nucleo non reagente. Resistenze controllanti per particelle sferiche di dimensioni variabili e invariabili. Distribuzione delle grandezze di particelle e modelli di flusso del fluido e del solido per il progetto dei reattori fluido-solido. Reattori catalitici eterogenei. Meccanismi di trasporto di materia nei catalizzatori porosi. Efficienza di un catalizzatore. Modulo di Thiele. Fattore di efficienza e diffusività effettiva. Fattore di efficienza per particelle catalitiche non isotermiche. Modelli pseudo-omogenei di reattori a letto fisso. Reattori a letto fluidizzato. Reattori gas-liquido. Il ruolo del trasporto di massa nei reattori chimici. Trasporto di materia da un gas a un liquido. Assorbimento con reazione chimica. Scelta del tipo di reattore gas-liquido. Calcolo dell'altezza di una colonna a riempimento per assorbimento chimico. Reattori biochimici. Introduzione ai processi industriali di fermentazione. I principali tipi di fermentatori. Determinazione dei parametri di un sistema biologico. Fermentatori contenenti film microbici. Reattori contenenti enzimi in soluzione. Reattori contenenti sistemi enzimatici immobilizzati.

INSEGNAMENTO	REATTORI CHIMICI
ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione alla cinetica chimica applicata.
2	Equazioni cinetiche per reazioni elementari e non elementari.
2	Metodi differenziali per l'analisi di dati cinetici.
2	Metodi integrali per l'analisi di dati cinetici.
2	Reazioni in fase liquida e in soluzione.
2	Catalisi omogenea ed eterogenea.
2	Meccanismi di reazione su catalizzatori solidi.
3	Metodi cinetici in catalisi eterogenea.
1	Disattivazione dei catalizzatori.
1	Sistemi catalitici complessi.
1	Reazioni eterogenee non catalitiche.
1	Reazioni enzimatiche.
2	Reattori chimici ideali.
2	Bilanci di materia per reattori batch, PFR e CSTR.
2	Bilanci di energia.

2	Ottimizzazione termica dei reattori.
1	Flusso non ideale.
1	La funzione di distribuzione dei tempi di residenza.
1	Disturbo a gradino e a impulso.
1	Modello a dispersione assiale.
1	Modello dei reattori CSTR in serie.
1	Reattori per sistemi reagenti eterogenei.
2	Modello della conversione progressiva e del nucleo non reagente.
2	Reattori catalitici eterogenei.
2	Meccanismi di trasporto di materia nei catalizzatori porosi.
2	Efficienza di un catalizzatore. Modulo di Thiele.
1	Fattore di efficienza e diffusività effettiva.
2	Fattore di efficienza per particelle catalitiche non isotermiche.
1	Coefficienti di trasporto di calore e di materia in reattori a letto fisso.
_	Equazione di Ergun.
1	Modelli pseudo-omogenei di reattori a letto fisso.
1	Reattori a letto fluidizzato.
1	
1	Reattori gas-liquido: il ruolo del trasporto di massa nei reattori chimici.
1	Colonne a riempimento. Colonne a gorgogliamento con e senza agitazione
	meccanica.
1	Bilanci di massa nei reattori gas-liquido.
1	Teoria del trasporto di massa con reazione chimica.
1	Il fattore di reazione. Reazioni del 1º e 2º ordine.
1	Scelta del reattore gas-liquido.
1	Calcolo dell'altezza di una colonna a riempimento
	ESERCITAZIONI
2	
2	Equazioni cinetiche per reazioni elementari e non elementari.
2	Metodi differenziali per l'analisi di dati cinetici.
2	Metodi integrali per l'analisi di dati cinetici.
1	Meccanismi di reazione su catalizzatori solidi.
2	Metodi cinetici in catalisi eterogenea.
1	Reazioni enzimatiche.
3	Bilanci di materia per reattori batch, PFR e CSTR.
2	Bilanci di energia.
1	Modello a dispersione assiale.
1	Modello dei reattori CSTR in serie.
1	Meccanismi di trasporto di materia nei catalizzatori porosi.
1	Efficienza di un catalizzatore. Modulo di Thiele.
1	Fattore di efficienza e diffusività effettiva.
1	Fattore di efficienza per particelle catalitiche non isotermiche.
1	Coefficienti di trasporto di calore e di materia in reattori a letto fisso.
	Equazione di Ergun.
2	Modelli pseudo-omogenei di reattori a letto fisso.
2	Calcolo dell'altezza di una colonna a riempimento
TESTI	O. Levenspiel, Ingegneria delle reazioni chimiche, 1995 Ambrosiana
CONSIGLIATI	L. D. Schmidt, The Engineering of Chemical Reactions, 1998 Oxford University Press.
	P. Trambouze, H. Van Landeghem, J. P. Wauquier, Chemical Reactors, 1989 Technip
	G. Astarita, D. W. Savage, A. Bisio, Gas treating with chemical solvents, 1985 Wiley