STRUTTURA	Scuola Politecnica - DEIM
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA	Ingegneria dell'Energia
INSEGNAMENTO	Fisica II
TIPO DI ATTIVITÀ	Di Base
AMBITO DISCIPLINARE	Fisica e Chimica
CODICE INSEGNAMENTO	07870
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	FIS/01
DOCENTE RESPONSABILE	Riccardo Burlon
	Professore Associato, SSD FIS/03
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	96
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	54
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Fisica I, Analisi Matematica
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali ed esercitazioni in aula
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova orale preceduta da una prova scritta
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Ogni mercoledì dalle 10.00 alle 12.00
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del Corso avrà conoscenza delle leggi fondamentali dell'elettromagnetismo classico e dei modelli che lo descrivono. In particolare avrà compreso e conoscerà le problematiche riguardanti i campi elettrici e magnetici sia statici che dipendenti dal tempo, e le loro interazioni con cariche e correnti elettriche.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di utilizzare le leggi dell'elettromagnetismo classico e le equazioni che le descrivono per risolvere semplici problemi di elettromagnetismo. Sarà in grado di schematizzare un fenomeno fisico individuandone l'evoluzione e stimando i valori delle grandezze fisiche coinvolte. Lo studente sarà infine in grado di valutare la validità e i limiti delle leggi e dei modelli usati.

Autonomia di giudizio

Lo studente sarà in grado di osservare i fenomeni naturali e riconoscere le leggi che li governano; sarà in grado di schematizzare un processo, di individuare le cause dominanti che determinano la sua evoluzione e di stimare i valori delle grandezze fisiche coinvolte. Lo studente sarà in grado di stabilire se in un dato problema va utilizzato un approccio "dinamico" (analisi del sistema in termini di forze elettriche e magnetiche), o diversamente, un approccio "energetico (analisi del

sistema attraverso l'applicazione del principio di conservazione dell'energia).

Abilità comunicative

Lo studente avrà acquisito la capacità di esporre con coerenza e proprietà di linguaggio le problematiche inerenti gli argomenti del corso, sapendo cogliere le connessioni con gli argomenti trattati nei corsi frequentati in precedenza o nello stesso semestre. Sarà in grado di sostenere conversazioni su argomenti tipici dell'elettromagnetismo, riferendosi ai principi e alle leggi su cui esso si fonda e facendo considerazioni qualitative su specifici problemi.

Capacità d'apprendimento

Lo studente avrà appreso le leggi fondamentali dell'elettromagnetismo e le metodologie tipiche delle scienze fisiche da applicare alle problematiche dell'ingegneria, in modo critico ed autonomo.

OBIETTIVI FORMATIVI

Acquisire i principi fondamentali dell'elettromagnetismo. Risolvere semplici esercizi riguardanti gli argomenti del corso.

ORE FRONTALI	LEZIONI FRONTALI
2	Oscillazioni. Oscillazioni smorzate e forzate.
8	Campo elettrostatico. Potenziale e lavoro elettrico. Legge di Gauss. Conduttori. Dielettrici. Energia elettrostatica.
2	Corrente elettrica continua
8	Campo Magnetico. Forza Magnetica. Legge di Ampere. Proprietà magnetiche della materia
6	Campi elettrici e magnetici variabili nel tempo. Induzione elettromagnetica.
2	Equazioni di Maxwell. Onde elettromagnetiche
	ESERCITAZIONI
8	Campo elettrostatico. Potenziale e lavoro elettrico. Legge di Gauss. Condensatori.
4	Circuiti elettrici in corrente continua e circuiti RC
8	Campo Magnetico. Forza Magnetica. Legge di Ampere.
6	Induzione elettromagnetica.
TESTI CONSIGLIATI	 P. Mazzoldi, M. Nigro, C. Voci. <i>Elementi di Fisica – Elettromagnetismo</i>, II edizione, Edises, Napoli, 2005, ISBN 8879593064. R.A. Serway, J.W. Jewett. <i>Fisica per scienze ed ingegneria</i>, IV edizione, Volume 2, Edises, Napoli, 2009. ISBN 9788879595346.