SCUOLA	Scienze giuridiche ed economico sociali
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA MAGISTRALE	SVILUPPO SOSTENIBILE DELLE
	ORGANIZZAZIONI PUBBLICHE E PRIVATE
INSEGNAMENTO	Fundamentals of dynamic social system
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Statistico-quantitativo
CODICE INSEGNAMENTO	16611
ARTICOLAZIONE IN MODULI	no
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	SECS-S/05
DOCENTE RESPONSABILE	Davidsen Pal Ingebrigt
	PO
	University of Bergen
CFU	10
NUMERO DI ORE RISERVATE ALLO	180
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	70
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	nessuna
ANNO DI CORSO	Ι
SEDE DI SVOLGIMENTO DELLE	http://www.uib.no/en/course/GEO-SD302
LEZIONI	-
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Esercitazioni in aula informatica, redazione di
	un progetto
	Introduction to the System Dynamics method,
	dynamic system structure and behaviour,
	misperceptions of dynamic systems, policy
	design and implementation.
	Level: graduate; 10 ECTS points. The course is
	conducted entirely in English.
	The course requires a Bachelor's degree in any
	subject. The course is open to students enrolled
	in the Erasmus Mundus master program and to
	graduate and undergraduate students at the
	University of Bergen.
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	Prova Scritta, Presentazione di un progetto
	The course is comprised of lectures,
	assignments, student assistant assistance on
	simulation software and assignments, and is
	completed by four hour written exam.
	Assessment is carried out by means of
	evaluation of individual assignment/s and an
	exam. To sit for the exam, the student must have
	pass marks on all the assignments. An ECTS
	grade is provided to the student at the end of the
	course according to the A–F scale. Students not
	successfully fulfilling all the course
	requirements within the regular time frame have

	the option of a re-sit once the following
	semester.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
	Course meetings include 36 lecture hours and
	18 hours of lab assistance over a 6-7 week
	period (two lectures and one lab per week) from
	mid-August until the mid-October. The exam is
	in the middle of December.
CALENDARIO DELLE ATTIVITÀ	http://www.uib.no/en/course/GEO-SD302
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	http://www.uib.no/en/course/GEO-SD302
STUDENTI	

OBIETTIVI FORMATIVI

This is an introduction to the System Dynamics method, dynamic system structure and behaviour, misperceptions of dynamic systems, policy design and implementation. Students learn to recognize typical problem behaviours of dynamic systems, exemplified by global warming, overgrazing, unemployment, epidemics, price fluctuations etc. They learn how to represent hypotheses of social systems, and to simulate and understand how system structures produce problem behaviours. They learn about hypothesis testing where both structure and behaviour are compared to observations. They also learn why dynamic systems are easily misperceived and how problems can be caused by well intended but malfunctioning policies. Furthermore, the course gives training in applying the scientific method to socio-economic problems and it provides a common language for interdisciplinary research.

OBIETTIVI DI APPRENDIMENTO ATTESI Learning Outcomes

Knowledge and understanding

Students gain knowledge about the System Dynamics method (P'HAPI: Problem, Hypothesis, Analysis, Policy, Implementation) and its relation to standard science, operations research and management. They also get to know the four basic building blocks of all dynamics systems (a stock with in- and out-flows, local feedback from stock to own flows, nonlinearities, and major loops with delays) and the use of causal loop diagrams, stock and flow diagrams, table functions, and equations to represent building blocks. And they obtain knowledge about different ways to analyze and understand development over time (graphical integration, phase diagrams, simulation) as well as about misperceptions and simplified heuristics that people posses and use to manage complex dynamic systems.

Applying knowledge and understanding

Students have to hand in six assignments during the course. All assignments must have an acceptable quality for the students to sit for the final exam. Students try out their intuitive knowledge and acquired knowledge in computer based simulations. The last part of the class is devoted to applications of System Dynamics with a particular focus on showing that one basic model can be used to understand many important social challenges, the most familiar situation serving as an analogy for the less transparent problems.

Making judgements

Students learn to make judgements about both structure (relationships between variables) and behaviour of systems. They learn to understand the benefits of simple analogies and their shortcomings.

Communication

Students are encouraged to and do participate actively in class. The last question in each of the six

assignments is particularly directed at being able to practise and communicate the method through the steps of P'HAPI (Problem identification, Hypothesis formulation, Analysis, Policy design and Implementation).

Learning skills

This is an introductory course to interested students and a solid background for those that go on the follow-up courses to become a skilled system dynamicist.

ORE	LEZIONI FRONTALI
10	Example application demonstrating all steps of
	the System Dynamics method
6	The history of System Dynamics
6	The steps of the System Dynamics method
	(P'HAPI)
6	Building block 1: Stock with in- and outflows
6	Building block 2: Local feedback (linear 1 st
	order systems) – reinforcing and balancing
6	Building block 3: Nonlinearities
6	Building block 4: Major feedback loops with
	delays – reinforcing and balancing/delays
6	Summary
6	Applications
6	System Dynamics modelling philosophy
	ESERCITAZIONI
6	
TESTI CONSIGLIATI	Basic reading list (more specific references will
	be provided in the introductory session):
	Selected parts of;
	Forrester, J.W. (1961). Industrial Dynamics.
	Cambridge: MIT Press.
	Appendix O: Beginners' Difficulties.
	Moss, A.C., Dyer, K.R., Albery, I.P., Allsop, S.,
	Kypri, K., Erskine, J., and Mackintosh,
	D. (2010). "Alcohol pharmacokinetics,
	decision making and folk wisdom: A
	reply to Moxnes and Jensen (2009).
	Moxnes, E. (2004). "Misperceptions of basic
	dynamics, the case of renewable
	resource management." System
	<i>Dynamics Review</i> 20 (2):139-162.
	Moxnes, E., and Jensen, L.C. (2009). "Drunker
	than intended; misperceptions and
	information treatments." Drug and
	Alcohol Dependence 105:63-70.
	Moxnes, E., and Jensen, L.C. (2010). "Complex
	alcohol pharmacokinetics: A response to
	Moss et al." <i>Drug and Alcohol</i>
	Dependence 109 (1-3):4-5.
	Sterman, J.D. (2000). Business Dynamics:
	Systems Thinking and Modeling for a
	Complex World. Boston:
	Irwin/McGraw-Hill.

Chapters 1 to 8 and 10. Suggested useful reading beginning of chapters 14, 15,
and 21 plus chapters 17, 19 and 20.
Sterman, J.D. (2002). "All models are wrong:
reflections on becoming a systems
scientist." System Dynamics Review
18 (4):501-531.
Sweeney, L.B., and Sterman, J.D. (2000).
"Bathtub dynamics: initial results of a systems
thinking inventory." System Dynamics
<i>Review</i> 16 (4):249-286.
Lecture notes by Erling Moxnes:
Instructions to download Powersim
Studio
Short introduction to Powersim Studio
P'HAPI (five steps when solving
problems).