SCUOLA	Delle Scienze di Base ed Applicate
ANNO ACCADEMICO	2015/2016 (Manifesto 2014/15)
CORSO DI LAUREA	Laurea in Scienze Biologiche (DM.270- L13)
INSEGNAMENTO	Biologia Molecolare con esercitazioni
TIPO DI ATTIVITÀ	Base/Caratterizzante
AMBITO DISCIPLINARE	Biomolecolari, Biochimiche, Genetiche
CODICE INSEGNAMENTO	01642
ARTICOLAZIONE IN MODULI	NO
SETTORI SCIENTIFICO DISCIPLINARI	BIO/11
DOCENTE RESPONSABILE	Nome e Cognome GIANGUZZA FABRIZIO
DOCENTE RESTONSABILE	Qualifica PROFESSORE ASSOCIATO
	Università di appartenza UNIPA
CFU	8+1
NUMERO DI ORE RISERVATE ALLO	149
STUDIO PERSONALE	17/
NUMERO DI ORE RISERVATE ALLE	76
ATTIVITÀ DIDATTICHE ASSISTITE	70
PROPEDEUTICITÀ	
ANNO DI CORSO	IIo
SEDE DI SVOLGIMENTO DELLE	Dipartimento STEBICEF – Aula 3
LEZIONI	attività consultabili sul sito del Corso di Laurea
BEERON	http://www.unipa.it/scienzebiologiche/
	intep.// www.unipu.it/sololingeolologicite/
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, esercitazioni, prove in itinere
MODALITÀ DI FREQUENZA	Facoltative
METODI DI VALUTAZIONE	Prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	attività da programmare e consultabili sul sito
	del Corso di Laurea
	http://www.unipa.it/scienzebiologiche/
CALENDARIO DELLE ATTIVITÀ	attività da programmare e consultabili sul sito
DIDATTICHE	del Corso di Laurea
	http://www.unipa.it/scienzebiologiche/
ORARIO DI RICEVIMENTO DEGLI	Istituzionalmente il giovedi dalle 12.00 alle
STUDENTI	13.00.
	Ma anche ogni giorno compatibilmente con gli
	altri impegni istituzionali e preferibilmente in
	maniera concordata via e-mail
	(fabrizio.gianguzza@unipa.it)

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione (obiettivi del corso)

Il corso di Biologia Molecolare fornirà le basi per la comprensione delle strutture degli acidi nucleici e per la comprensione delle interazioni tra acidi nucleici e DNA, sia per proteine con funzioni strutturali che regolative. Si occuperà anche della struttura della cromatina, finalizzando sempre la conoscenza strutturale alla funzione. E a partire da queste basi strutturali si occuperà dei meccanismi molecolari alla base del flusso delle informazioni genetiche: replicazione, trascrizione e traduzione (a livello sia di organismi procariotici che eucariotici) Nel credito di esercitazioni verranno affrontate in aula le basi delle tecnologie ricombinanti ed in laboratorio l'estrazione e l'analisi

elettroforetica del DNA.

Capacità di applicare conoscenza e comprensione

Gli studenti del corso di Biologia Molecolare potranno spendere tali conoscenze direttamente nel mondo del lavoro (ruoli tecnici in laboratori pubblici e privati di ricerca o di analisi molecolare e biotecnologici), o sfruttare le conoscenze acquisite per la prosecuzione degli studi in una LM della classe 6

Autonomia di giudizio

Gli studenti del corso integrato di Biologia Molecolare, poiché il corso tende a far derivare dall'organizzazione strutturale delle macromolecole (acidi nucleici e loro ligandi) la loro funzionalità nei meccanismi molecolari implicati nello sviluppo embrionale e nel differenziamento cellulare, saranno in condizioni di valutare in modo razionale ed autonomo le conoscenze di base fornite dal corso.

Abilità comunicative

Gli studenti del corso integrato di Biologia Molecolare per le modalità di offerta formativa suesposta acquisiranno una metodologia comunicativa di tipo scientifico/sperimentale nell'ambito dei meccanismi molecolari di base cioinvolti nel flusso dell'informazione gentica.

Capacità d'apprendimento

Il corso integrato di Biologia Molecolare, in maniera coordinata con gli altri corsi del CL e sfruttando anche il tirocinio, fornirà allo studente un metodo di apprendimento e di applicazioni di tale apprendimento in attività di sperimentazioni scientifiche sia di base che applicative.

	Biologia Molecolare con Esercitazioni 8+1
ORE FRONTALI	LEZIONI FRONTALI
8	La struttura fine del DNA ed i suoi componenti: scheletro zucchero fosfato,basi azotate,legame beta glicosidico. Angoli torsionali e i parametri dell'elica. Appaiamenti di basi e forze di impilamento, e di idratazione.
4	Strutture classiche della doppia elica (A, B, Z) e polimorfismi di struttura. Triple e quadruple eliche.
4	Parametri locali dell'elica ed interazione con le proteine. Curvatura intrinseca ed indotta.
3	Le proprietà del DNA: flessibilità torsionale ed assiale; twist e writhe e LK.
3	Le topoisomeras: i meccanismi molecolari di azione ed il loro coinvolgimento nella struttura
4	Struttura della cromatina
10	Replicazione: Il Replicone: - Organizzazione strutturale dei repliconi dei procarioti e degli eucarioti Le origini di replicazione (procarioti/eucarioti): struttura composizione e topologia La replicazione: - Generalità del processo di duplicazione: la chimica delle reazioni di polimerizzazione; la natura semiconservativa della replicazione; la direzionalità della forca di replicazione - Le DNA polimerasi e le replicasi e la loro processività - L'enzimologia della replicazione: il PRIMOSOMA, il REPLISOMA; - Analisi comparativa della replicazione nei procarioti ed eucarioti - Il problema della replicazione delle "estremità": i meccanismi attuati per terminare la replicazione nei genomi circolari e lineari, la Telomerasi.
12	Trascrizione procarioti: Struttura e funzione della RNA polimerasi batterica. Il riconoscimento del promotore dipende da sequenze consenso. Il fattore sigma controlla il legame con il DNA e si lega ad una "faccia" del DNA. Fattori sigma alternativi. Sporulazione come esempio di utilizzo di una cascata di sigma alternativi. Allungamento e pausa, superamento della pausa/arresto.

	- Terminazione intrinseca e rho dipendente.
	- Antiterminazione:meccanismi.
	- Organizzazione degli operoni e meccanismo di repressione/induzione
	- Esempi di regolazione dell'espressione nei batteri: la repressione da cataboliti (operoni
	LAC, ARA); l'attenuazione (operone Trp); il controllo autogeno; le diverse strategie
	fagiche (T4,T7,ma soprattutto Lambda)
	ragione (11,17,ma sopranata)
12	Trascrizione eucarioti:
	- L'organizzazione dei geni eucariotici in introni ed esoni e le conseguenze di questa
	organizzazione.
	- Le tre diverse RNA polimerasi eucariotiche.
	- I promotori eucariotici di classe I, II e III; l'assemblaggio del PIC, ed i Fattori Generali
	coinvolti; il ruolo di TBP e delle TAFs.
	- I Fattori di Trascrizione coinvolti nell'attivazione della trascrizione; motivi di legame al
	DNA, di attivazione e di dimerizzazione: Gal4 come esempio di un "canonico"
	attivatore.
	- Il ruolo degli "enhancer".
	- La trascrizione della cromatina : cenni sul ruolo regolativo dell'organizzazione in
	cromatina; il coinvolgimento dei "rimodellatori della cromatina"; il concetto di isole
	funzionali ed isolatori cromatinici.
	- I meccanismi di splicing di tipo I e II, splicing dell'hnRNA e spliceosoma, splicing del
	tRNA. Il ruolo catalitico dell'RNA nello splicing di tipo I e II. Lo splicing alternativo
	come meccanismo di regolazione e la determinazione del sesso in drosophila
	1 2
	dell'RNA.Ruolo del macchinario dell'RNAi nel silenziamento genico
4	Sintesi proteica:
·	- Il ruolo degli RNA (mRNA,rRNA e tRNA) nei meccanismi di sintesi proteica.
	- Paragone mRNA procarioti eucarioti (cappuccio, polyA e terminazione)
	- L'organizzazione del ribosoma. La fase di inizio della sintesi proteica nei
	procarioti/eucarioti.
	- Allungamento e terminazione della traduzione.
	- Il codice genetico; il vacillamento in terza base (anticodone) le aminoacil-tRNA-sintetasi
	ed il caricamento dei tRNA.
	- Specie maggioritarie e minoritarie dei tRNA e meccanismo di soppressione.
	specie maggiornarie e minoritarie del tre 171 e meccamsino di soppressione.
	ESERCITAZIONI
6	Enzimi di restrizione – Vettori plasmidici – il DNA ricombinante (ligasi e trasformazione) -
	cloni ricombinanti e loro selezione.
6	Estrazione di DNA plasmidico, taglio con ER ed analisi elettroforetica
TESTI	Testo adottato
CONSIGLIATI	Watson La Biologia Molecolare del gene Zanichelli editore
CONSIGLIATI	watson La Biologia Molecolare del gene Zamchem editore
	In alternativa:
	Amaldi et al. Biologia molecolare Casa Ed. Ambrosiana
	Amaidi et al. Diologia molecolare Casa Ed. Amolosiana
	Per eventuale consultazione:
	Lewin: Il GENE VIII
	LodishDarnell: Biologia Molecolare della cellula
	Weaver Biologia molecolare McGraw-Hill editore
	1 - 0