STRUTTURA	Scuola Politecnica – Dipartimento di Architettura	
ANNO ACCADEMICO	2014/2015	
CORSO DI LAUREA	Disegno Industriale	
INSEGNAMENTO	Disegno Automatico	
TIPO DI ATTIVITÀ	Caratterizzante	
AMBITO DISCIPLINARE	Discipline ingegneristiche	
CODICE INSEGNAMENTO	00270	
ARTICOLAZIONE IN MODULI	NO	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/15	
DOCENTE RESPONSABILE	Antonio MANCUSO P.A. Università di Palermo	
CFU	6	
NUMERO DI ORE RISERVATE ALLO STUDIO PERSONALE	102	
NUMERO DI ORE RISERVATE ALLE ATTIVITÀ DIDATTICHE ASSISTITE	48	
PROPEDEUTICITÀ	nessuna	
ANNO DI CORSO	П	
SEDE DI SVOLGIMENTO DELLE LEZIONI	Consultare il sito politecnica.unipa.it	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali Esercitazioni in aula	
MODALITÀ DI FREQUENZA	Facoltativa	
METODI DI VALUTAZIONE	Prova Orale, Test a risposte multiple, Presentazione di un progetto	
TIPO DI VALUTAZIONE	Voto in trentesimi	
PERIODO DELLE LEZIONI	Secondo semestre	
CALENDARIO DELLE ATTIVITÀ DIDATTICHE	Consultare il sito politecnica.unipa.it	
ORARIO DI RICEVIMENTO DEGLI STUDENTI	Lun. 15-17	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione: Lo studente al termine del corso avrà acquisito capacità di comprensione e lettura di un disegno

tecnico sviluppato secondo le Normative vigenti. Sarà in grado sia di eseguire modelli CAD di oggetti singoli ed assemblati facendo uso di software di modellazione avanzati che di comunicare graficamente le idee progettuali.

Conoscenza e capacità di comprensione applicate,:

Lo studente sarà in grado di distinguere l'opportunità di applicare le diverse metodologie di modellazione e rappresentazione a concreti casi applicativi.

Autonomia di giudizio:

Lo studente sarà in grado di interpretare le informazioni in suo possesso ed adottare di conseguenza le più adeguate

metodologie di modellazione e rappresentazione.

Abilità comunicative:

Lo studente acquisirà la capacità di comunicare ed esprimere problematiche inerenti le tecniche di modellazione. Sarà in grado di sostenere conversazioni su modellazione CAD, tecniche di rappresentazione e comunicazione grafica.

Capacità di apprendere:

Lo studente avrà appreso le tecniche di modellazione CAD, parte integrante di un moderno processo di progettazione, e questo gli consentirà di proseguire gli studi ingegneristici con maggiore autonomia e discernimento.

OBIETTIVI FORMATIVI DEL MODULO

Obiettivo del corso è quello di fornire agli studenti strumenti necessari alla conoscenza delle nozioni di base relative al disegno tecnico sia per quanto concerne gli aspetti legati alle Norme di rappresentazione, sia per quanto concerne l'utilizzo di sistemi software di modellazione CAD.con particolare riferimento agli ambiti applicativi del Disegno industriale

MODULO		DISEGNO AUTOMATICO	
ORE FRONTALI		LEZIONI FRONTALI	
10 ore		Elementi di disegno e rappresentazione	
	2	Norme per i disegni: formato dei fogli, scale, tipi di linea;	
	3	Proiezioni ortogonali, intersezioni, compenetrazioni, viste, sezioni;	
	3	Quotatura, sistemi di quotatura, quotatura funzionale e tecnologica;	
	2	Rilievo dal vero. Schizzi. Interpretazione di un disegno costruttivo.	
18 ore		Teoria della modellazione CAD	
	5	Curve parametriche, spline, di Bézier, B-spline, NURBS.	
	3	Superfici parametriche primitive; superfici composte, di Bézier e B-spline.	
	2	Modellazione wire frame, per superfici, per solidi. Operatori booleani.	
	8	Sistemi CAD per il disegno – Caratteristiche, criteri di utilizzazione. Uso di	
		modellatori solidi tridimensionali basati su primitive. Messa in tavola di un	
		progetto. Gli standard grafici (IGES, STL, DXF).	
20 ore		ESERCITAZIONI	
	8	Applicazioni degli argomenti trattati durante il corso al caso della	
		modellazione di curve, superfici e solidi, mediante l'utilizzo di software	
		commerciali;	
1	12	Sviluppo di modelli CAD 3D di oggetti o assemblati dal rilievo alla messa in	
		tavola.	
TESTI		Chirone – Tornincasa; Disegno Tecnico Industriale. Ed. Il Capitello, Torino.	
CONSIGLIATI		G. Bartoline, Fondamenti di Comunicazione Grafica; McGraw – Hill 2003	
		Mortenson; Modelli Geometrici in Computer Graphics. Ed. McGraw – Hill.	

Dispense fornite dal docente.