STRUTTURA	Scuola Politecnica – Dipartimento di Energia,
	ingegneria dell'Informazione e modelli
	Matematici (DEIM)
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA MAGISTRALE	Ingegneria Elettrica
INSEGNAMENTO	Laboratorio di Convertitori e Azionamenti
	Elettrici
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Elettrica
CODICE INSEGNAMENTO	16942
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-IND/32
DOCENTE RESPONSABILE	Fabio Genduso, Ricercatore, UNIPA
CFU	6
NUMERO DI ORE RISERVATE ALLO	90
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Per una efficace frequenza del corso sono
	necessarie, come prerequisito, conoscenze di
	elettrotecnica, macchine elettriche, elettronica,
	elettronica industriale di potenza, azionamenti
	elettrici, controlli automatici e buona conoscenza
ANNO DI CODCO	della lingua inglese.
ANNO DI CORSO	
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
ORGANIZZAZIONE DELLA DIDATTICA	Esercitazioni in aula informatica, Esercitazioni in
	laboratorio.
MODALITÀ DI FREQUENZA	Non obbligatoria, ma comunque raccomandata
METODI DI VALUTAZIONE	Prova Orale, Presentazione delle esercitazioni
THE OUT OF THE THE OTHER	svolte
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	Constitute in site pointeringuitinguite
ORARIO DI RICEVIMENTO DEGLI	Da concordare con il docente del corso e
STUDENTI	comunque non inferiore a 4 ore settimanali.
~	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Il corso ha carattere essenzialmente pratico e, al suo termine lo studente, avrà acquisito conoscenze e metodologie per affrontare la progettazione di convertitori, azionamenti elettrici e dei relativi sistemi di controllo. Lo studente affronterà le problematiche di progettazione a vari livelli di dettaglio, verificando il comportamento transitorio ed a regime permanente dei suddetti sistemi interpretandone correttamente i risultati di simulazione.

Per il raggiungimento di questo obiettivo il corso comprende: lezioni frontali, analisi e discussione di casi di studio durante le esercitazioni ed i laboratori. Per la verifica di questo obiettivo l'esame comprende il colloquio orale sugli argomenti sviluppati durante il corso e la discussione delle

esercitazioni elaborate dagli studenti e consegnate per iscritto.

Capacità di applicare conoscenza e comprensione

Lo studente avrà acquisito conoscenze, capacità di comprensione e metodologie che gli consentiranno affrontare con successo problemi tipici della progettazione, sviluppo e messa a punto convertitori elettronici di potenza e di azionamenti elettrici. Egli, avendo una chiara visione di tali sistemi, ne saprà cogliere le varie interconnessioni, i legami, le specifiche e le particolarità, arrivando alla loro modellazione completa e simulazione sia in transitorio che a regime permanente.

Per il raggiungimento di questo obiettivo durante le lezioni frontali gli studenti saranno stimolati, di volta in volta, ad applicare le conoscenze acquisite a situazioni distinte da quelle affrontate dal docente, sia pure in tutta coerenza con gli argomenti generali proposti a lezione. Tale stimolo verrà fornito anche nel momento di verifica finale dell'esame partendo dagli argomenti riguardanti le esercitazioni.

Autonomia di giudizio

Lo studente avrà autonomia di giudizio nella valutazione del comportamento transitorio dei sistemi elettrici di potenza sapendone individuare le specificità, le necessità di controllo e le condizioni di funzionamento sia corretto che anomalo. Le conoscenze e le abilità acquisite gli consentiranno di affrontare problemi non strutturati e prendere decisioni in situazioni di incertezza. Lo studente sarà inoltre in grado di auto-valutare i risultati conseguiti, le metodologie e le strategie adoperate per l'acquisizione di competenze nello specifico settore dei convertitori e degli azionamenti elettrici, di saper valutare le criticità e le eventuali azioni correttive da apportare in tutti i casi in cui esse si rendano necessarie.

Per la verifica di questo obiettivo durante l'esame orale lo studente sarà invitato ad analizzare un problema non esplicitamente trattato a lezione per il quale, sarà inviato a dare non la soluzione completa, ma ad ipotizzare un possibile approccio ed uno scenario di possibile risoluzione.

Abilità comunicative

Lo studente sarà in grado di comunicare con lessico appropriato e competenza le problematiche complesse riguardanti i principali convertitori elettronici di potenza e gli azionamenti elettrici. Lo studente sarà in grado di verbalizzare, in modo chiaro e secondo la giusta concatenazione argomentativa, le caratteristiche di un problema, mettendone chiaramente in evidenza i dati conosciuti, le incognite, evidenziando le correlazioni e le interazioni tra le specifiche dei convertitori elettronici di potenza e le macchine elettriche rotanti, nella visione del funzionamento armonico di un azionamento elettrico. Egli, inoltre, sarà capace di esplicitare correttamente i collegamenti con problemi che presentino condizioni di analogia, utilizzando metodologie di approccio di tipo sia bottom up che top down e facendo previsioni in merito ai risultati attesi.

Per il raggiungimento di questo obiettivo lo studente sarà più volte sollecitato ad intervenire durante la lezione partecipandovi attivamente esprimendo le sue idee in modo pertinente e con proprietà di linguaggio. Per la verifica di questo obiettivo l'esame prevede il colloquio orale nel quale sarà valutata la corretta formulazione delle risposte ai quesiti proposti, la capacità di argomentazione ed il corretto e conseguenziale ordine espositivo.

Capacità d'apprendimento

Lo studente sarà in grado di approfondire quanto appreso ed acquisire ulteriori conoscenze sugli azionamenti elettrici e sui convertitori elettronici di potenza. Egli sarà in grado di approfondire tematiche complesse quali quelle connesse allo sviluppo e messa a punto di nuove ed originali strategie di controllo riutilizzando gli strumenti e le strategie apprese ed i tools messi a disposizione durante il corso.

Per la verifica di questo obiettivo gli studenti saranno invitati ad approfondire un problema specifico lasciando loro piena libertà di documentazione da diverse fonti. Seguirà discussione in aula in merito al materiale da loro reperito e alle conclusioni che ne hanno tratto.

OBIETTIVI FORMATIVI DEL CORSO

Il corso ha carattere essenzialmente applicativo ed affronta la progettazione, sviluppo e messa a punto dei convertitori di potenza e degli azionamenti elettrici attualmente impiegati sia nell'ambito industriale sia in quello della trazione.

Gli obiettivi formativi consistono nel fornire agli allievi capacità adeguate per:

- scegliere ed assemblare i diversi componenti e le strutture di un azionamento elettrico;
- pianificare prove di verifica e di collaudo per azionamenti elettrici e convertitori statici di potenza;
- applicare correttamente le strategie di *problem solving*, attraverso modellazioni matematiche, simulazioni al calcolatore e verifiche sperimentali, alle problematiche riguardanti lo studio e lo sviluppo di convertitori elettronici di potenza e di azionamenti elettrici;
- simulare e implementare su DSP strategie di controllo tradizionali ed innovative, per VSI e azionamenti elettrici a velocità variabile;
- auto-valutare il proprio percorso di apprrendimento e le metodologie di studio attuate;
- applicare con sicurezza nella vita professionale gli strumenti ed i metodi acquisiti.

ODE EDONEAL I	T EZIONI EDONICAT I
ORE FRONTALI	LEZIONI FRONTALI
6	Introduzione al corso. Il modello ideale di commutazione di un transistore
	di potenza, il modello dinamico di un inverter comprensivo delle equazioni
	del DC link.
9	Modulazione vettoriale classica, implementazione della modulazione
	vettoriale mediante il duty cycle e relativo algoritmo a basso onere computazionale.
9	Modello generale di una macchina elettrica mediante le equazioni di
	Khron e Gibbs, tensore di coppia. Applicazione delle equazioni dei modelli
	di Khron e Gibbs. Regola generale per la determinazione della matrice
	delle impedenze operazionali di una macchina elettrica. Interazioni tra
	sottosistema elettrico e sottosistema meccanico. Rappresentazioni con lo
	stato delle equazioni di macchina.
4	Richiami sui regolatori standard, P, PI, PID, PD. Metodi di taratura,
	secondo Ziegler e Nichols, mediante il metodo dell'ottimo simmetrico,
	mediante tecniche di model matching.
	1
ORE DI	ESERCITAZIONI E LABORATORIO
ESERCITAZIONE	
/ LABORATORIO	
6/4	Implementazione dei modelli del motore asincrono. Implementazione di
	controlli scalari a V/f costante e controllo I/□2.
	Implementazione del modello del motore sincrono a magneti permanenti.
	Simulazione del motore sincrono a magneti permanenti. Taratura e
	simulazione dei regolatori per un azionamento con motore sincrono a
	magneti permanenti. Controllo ad orientamento di campo.
	Simulazione in ambiente Matlab Simulink di convertitori VSI delle
	relative tecniche di modulazione ed azionamenti in C.C. e in C.A.
6/4	Impiego del sistema di sviluppo dSpace in laboratorio per
	l'implementazione di tecniche di modulazione PWM sinusoidale,
	vettoriale e di tecniche di controllo scalare di azionamenti elettrici in c.a.
	Impiego del sistema di sviluppo dSpace in laboratorio per
0/12	l'implementazione di tecniche di controllo scalare e vettoriale per motori
	asincroni e per motori sincroni a magneti permanenti.
TESTI	Presentazioni utilizzate a lezione in formato digitale o cartaceo

- H. Bühler: Electronique de reglage et de puissance, Ed. Georgi, 1979
 N. Mohan, T. Undeland, W. Robbins "Power Electronics" Ed. John Wiley and Sons, NY 1999.
- Manuale del sistema di sviluppo dSpace