SCUOLA	delle Scienze di Base e Applicate
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA MAGISTRALE A	Chimica e Tecnologia Farmaceutiche - 2013
CICLO UNICO	-
INSEGNAMENTO	Chimica Farmaceutica e Tossicologica I
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline chimico-farmaceutiche e
	tecnologiche
CODICE INSEGNAMENTO	01873
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/08
DOCENTE RESPONSABILE	Anna Maria Almerico
	Professore Ordinario
	Università di Palermo
CFU	8
NUMERO DI ORE RISERVATE ALLO	140
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	60
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica Organica
ANNO DI CORSO	III
SEDE DI SVOLGIMENTO DELLE	Dipartimento di STEBICEF
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Colloquio con contemporanea capacità di
	rappresentare per iscritto le strutture chimiche,
	le reazioni e i meccanismi coinvolti
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	primo semestre
CALENDARIO DELLE ATTIVITÀ	http://offweb.unipa.it/
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lunedì 17.00-18.00
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Conoscenza degli elementi utili per la comprensione delle varie fasi che portano i principi attivi a manifestare l'attività farmaceutica e capacità di interpretazione dei probabili meccanismi molecolari.

Capacità di applicare conoscenza e comprensione

Capacità di collegare gli argomenti trattati nel programma tra di loro e di rappresentare per iscritto

- a) le strutture di sostanze di interesse biologico, di farmaci e profarmaci;
- b) le reazioni in cui sono coinvolte;
- c) i meccanismi con cui agiscono sul sito recettoriale per manifestare la loro attività.

Autonomia di giudizio

Essere in grado di valutare i requisiti strutturali delle molecole attive per l'interpretazione dei probabili meccanismi di azione.

Abilità comunicative

Capacità di esporre i risultati degli studi tendenti a chiarire le problematiche inerenti le interazioni farmaco-recettore

responsabili dell'attività farmaceutica.

Capacità d'apprendimento

Utilizzando le conoscenze sui farmaci e profarmaci che agiscono su organismi invasori patogeni estranei all'organismo da curare e sulle cellule tumorali maturate nel corso, acquisire la capacità di aggiornamento mediante la consultazione di pubblicazioni scientifiche specifiche del settore farmaceutico, utile per il proficuo svolgimento dell'attività professionale o per la partecipazione a corsi formativi successivi alla laurea.

OBIETTIVI FORMATIVI DEL CORSO

L'obiettivo formativo previsto è quello di fare acquisire allo studente le competenze necessarie per comprendere le problematiche inerenti le fasi che attraversa un farmaco o profarmaco dal momento della sua somministrazione a quella dell'interazione con il recettore e della eliminazione, sia come tale sia come prodotto di biotrasformazione. Particolare rilievo viene riservato ai meccanismi di azione ed alla comprensione delle relazioni struttura-attività.

CORSO	CHIMICA FARMACEUTICA E TOSSICOLOGICA I
ORE FRONTALI	LEZIONI FRONTALI
2	FARMACI: Definizione di farmaco e medicamento. Denominazione dei Farmaci. Lettura generica di una scheda di sostanza farmaceutica. Forme farmaceutiche e vie di somministrazione. Fasi dell'azione di un farmaco: Fase Farmaceutica, Fase Farmacocinetica, Fase Farmacodinamica-Chemioterapica.
12	FASE FARMACOCINETICA: Meccanismi principali di assorbimento: Ionizzazione e Assorbimento: Equazione di Henderson-Hasselbach e sue applicazioni. Forme Farmaceutiche ed Assorbimento. Distribuzione; Escrezione e Metabolismo. Reazioni metaboliche: Trasformazioni metaboliche della Fase I (funzionalizzazione); Trasformazioni metaboliche della Fase II (coniugazione).
10	FASE FARMACODINAMICA: Effetto farmacodinamico e chemioterapico. Tipi di Recettori: non-catalitici, catalitici (enzimi), DNA. Complesso Farmaco-Recettore e attività biologica. Interazioni specifiche e non specifiche. Correlazione tra la costante di equilibrio di associazione del complesso F·R e la variazione di energia libera. Tipi di legami coinvolti nella formazione del complesso F·R: Legame covalente (Arsenicali); Interazioni elettrostatiche: legame ionico, legame ione-dipolo, legame dipolo-dipolo; Legame idrogeno; Legame per trasferimento di carica: Accettori e Donatori di elettroni π; meccanismo di formazione del Complesso a Trasferimento di Carica (CTC) basato sulla teoria della risonanza e sulla teoria degli orbitali molecolari; Legame idrofobico; Forze di van der Waals o di dispersione di London. Teoria recettoriale. Affinità, Efficacia intrinseca, Attività intrinseca (E _{max}), Agonisti, Antagonisti, Agonisti parziali. Concetti generali sulle teorie recettoriali: Teoria dell'occupazione di Gaddum e Clark modificata da Ariens e Stephenson (Affinità e attività intrinseca). Recettori di riserva. Teoria della velocità ("colpisci e attiva") di Paton. Teoria dell'adattamento indotto di Koshland. Teoria della perturbazione macromolecolare di Bellau. Teoria dell'occupazione-attivazione o del recettore a due stati di Ariens e Rodriguez De Miranda. Curve Dose-Risposta. Equazioni matematiche delle curve dose-risposta. Direct Plot, Titration Plot, Double Reciprocal Plot, Hill Plot.
12	ENZIMI (RECETTORI CATALITICI): Complessi Enzima-Substrato. Catalisi ed Enzimi. Stati di transizione. Meccanismi di catalisi enzimatica: 1) Catalisi per destabilizzazione o deformazione; 2) Catalisi covalente-catalisi nucleofila: analogia enzimatica dell'assistenza anchimerica; 3) Catalisi enzimatica simultanea acido-base. INIBITORI ENZIMATICI REVERSIBILI E IRREVERSIBILI: Schemi cinetici di un inibitore enzimatico competitivo, di un agente "affinity labeling", di un inattivatore "mechanism-based enzyme". INIBITORI ENZIMATICI REVERSIBILI (Inibitori enzimatici competitivi). Inibitori della Diidropteroatosintetasi: Derivati Sulfonamidici e meccanismo di azione dei Sulfamidici. Tossicità selettiva. Farmacoresistenza. Farmacosinergismo. Studi degli effetti secondari dei sulfamidici. INIBIZIONE E INATTIVAZIONE ENZIMATICA: Inibitori, Inattivatori e Riattivatori . INIBITORI ENZIMATICI IRREVERSIBILI: 1) Inibitori della Peptidoglicanotranspeptidasi: Antibiotici β-lattamici e meccanismo di azione degli antibiotici β-lattamici; Farmacoresistenza; Metabolismo dei β-lattamici; 2) Inattivatori delle β-lattamasi (Inibizione enzimatica "per suicidio"): meccanismo di azione ed effetti sinergici. Catalisi coenzimatica a) Piridossal 5'-Fosfato (PLP). Meccanismo della prima tappa di tutte le reazioni enzimatiche di aminoacidi PLP-dipendenti. b) Tetraidrofolato e Nucleotidi Piridinici: Meccanismo della riduzione enzimatica dell'acido folico nucleotidi piridinici-dipendente (NADH, NADPH). 3)

	Inibitori della Timidilatosintetasi (TS). 4) Inibitori della Dididrofolatoriduttasi (DHFR).
10	DNA: Struttura e proprietà; Tautomeria delle basi puriniche e pirimidiniche; Classi di
	farmaci che interagiscono con il DNA: a) ALCHILANTI: Agenti antitumorali: Mostarde
	azotate alifatiche e aromatiche; Meccanismo di alchilazione delle mostarde azotate: Errore di
	codice, Depurinazione, Legami crociati. b) INTERCALANTI: 1) Agenti antimalarici:
	Chinina, Derivati 4-amino- e 8-amino-chinolinici, 9-acridinici; Meccanismo
	dell'intercalazione e complesso dei vari antimalarici con il DNA; 2) Agenti antitumorali:
	Antibiotici antraci clinici. c) FARMACI CHE PROVOCANO LA SCISSIONE DEI
	FILAMENTI DEL DNA: Antibiotici antitumorali antraciclinici.
10	PROFARMACI: Gruppi aptofori e farmacofori; Drug Latentiation; Profarmaci legati a
	carrier: Profarmaco "Bipartate", "Tripartate" (Doppio profarmaco-Estere Doppio; Profarmaco
	reciproco Tripartate) Profarmaci bioprecursori: 1) <u>Attivazione ossidativa</u> : a) N-
	dealchilazione: Meccanismo della metilazione del DNA; b) Deaminazione ossidativa:
	Meccanismo di alchilazione del DNA; Vie di detossificazione; Tossicità selettiva. c) N-
	ossidazione: Meccanismo della metilazione del DNA e della formazione di radicali metilici.
	2) Attivazione riduttiva: a) Azoriduzione. b) Nitroriduzione. c) Bioriduzione alchilante:
	Meccanismo della mono-e bis-alchilazione bioriduttiva del DNA; Antibiotici antitumorali
	antraciclinici: meccanismo di alchilazione bioriduttiva; meccanismo di intercalazione;
	meccanismo di formazione di radicali idrossilici. 3) Attivazione a nucleotide: Meccanismo di
4	azione. 4) Attivazione per fosforilazione: Agenti Antivirali.
4	INTRODUZIONE ALLO SVILUPPO DEI FARMACI: Composto guida (Lead Compound). Relazioni Struttura-Attività (SAR). Descrittori e cenni sulle Relazioni Quantitative
	Struttura-Attività (QSAR).
TESTI	R.B.Silverman: "The organic chemistry of drug design and drug action." 2nd Edition., 2004,
CONSIGLIATI	Elsevier, Academic Press, USA.
CONSTRUCTION	T.L.Lemke, D.A.Williams : "Foye's Principi di Chimica Farmaceutica." IV Edizione
	Italiana, 2005, Piccin Nuova Libraria S.p.A., Padova.
	Graham L. Patrick: "Introduzione alla Chimica Farmaceutica." 2004, EdiSES Srl, Napoli.
	C.G.Wermuth: "Le applicazioni della Chimica Farmaceutica." 2000, EdiSES,.
	C.G.Alberti, L.Villa: "Chimica Farmaceutica voll. I e II." 1984, OEMF, Milano.
	A.Korolkovas : "Essential of Medicinal Chemistry." 1988 , John Wiley § Sons, Inc., USA.
	TESTI DI CONSULTAZIONE:
	AA.VV.: "Burger's Medicinal Chemistry and Drug Discovery" 6th Edition, 2003, Wiley.
	AA.VV.: "Comprehensive Medicinal Chemistry II" 2007 , Elsevier.
	"Molecular Conceptor TM " Drug Design Courseware, Version 2.11, 2009 , Synergix Ltd.