FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2015 - 2016
CORSO DI LAUREA	Chimica
INSEGNAMENTO	Chimica Analitica Applicata e Strumentale
TIPO DI ATTIVITÀ	Affine (modulo 1), Caratterizzante (modulo 2)
AMBITO DISCIPLINARE	Attività formative affini o integrative (mod. 1)
	Discipline Analitiche e Ambientali (mod 2)
CODICE INSEGNAMENTO	13735
ARTICOLAZIONE IN MODULI	SI
NUMERO MODULI	2
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/01
DOCENTE RESPONSABILE	Santino Orecchio
(MODULO 1)	Professore Associato
	Università di Palermo
DOCENTE COINVOLTO	Pettignano Alberto
(MODULO 2)	Ricercatore
	Università di Palermo
CFU	12 (7 frontali + 5 laboratorio)
NUMERO DI ORE RISERVATE ALLO	169
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	131
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica generale ed inorganica; Esercitazioni
	di preparazioni chimiche con laboratorio
ANNO DI CORSO	terzo
SEDE DI SVOLGIMENTO DELLE	Aula D, edificio 17, viale delle Scienze
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni di laboratorio
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	(1° Modulo) Valutazione attività di laboratorio,
	Test a risposte multiple.
	(2° Modulo) Prove in itinere, esame orale.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Secondo il caledario approvato dal CISC
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Prof. Santino Orecchio
STUDENTI	martedì 8.30- 11
	Prof. Alberto Pettignano
	Martedì, giovedì
	Ore 15-17

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Conoscere i metodi analitici e le tecniche strumentali da applicare per l'analisi di matrici di interesse ambientale (aria, acqua, suolo, rifiuti), alimentare e industriale (leghe)

Capacità di applicare conoscenza e comprensione

Capacità di applicare le conoscenze acquisite per una corretta progettazione delle varie fasi del procedimento analitico, dal prelievo, trattamento e conservazione del campione al risultato finale. Autonomia di giudizio

Capacità di scegliere il più opportuno procedimento analitico atto a caratterizzare la matrice in esame.

Abilità comunicative

Essere in grado di esporre logicamente gli aspetti della chimica analitica connessi con le varie fasi del procedimento analitico integrandoli con il trattamento dei dati e l'analisi critica dei risultati ottenuti.

Capacità d'apprendimento

Essere in grado di approfondire gli argomenti trattati anche attraverso l'uso dei dati bibliografici di letteratura.

OBIETTIVI FORMATIVI DEL MODULO 1

Obiettivo del modulo è fornire allo studente gli elementi utili ad applicare i metodi e le tecniche strumentali propri della chimica analitica per la caratterizzazione di matrici complesse e la determinazione quantitativa di analiti specifici.

MODULO	CHIMICA ANALITICA APPLICATA
ORE FRONTALI	LEZIONI FRONTALI
2	Fasi preliminari di una ricerca
2	Tecniche di campionamento
2	Preparazione dei campioni per le analisi
1	Analisi termogravimetriche
1	Uso delle sonde multiparametriche
	ESERCITAZIONI
5	Campionamento suolo
5	Determinazione dell'ossigeno disciolto
5	Determinazione del ferro nelle ceramiche
5	Determinazione dei nitriti nelle acque
5	Determinazione turbidimetrica dei solfati nelle acque
5	Determinazione dell'umidità e delle ceneri in un alimento
5	Determinazione dei grassi di un alimento
10	Determinazione dei metalli (ferro, zinco, ecc.) in un alimento
5	Determinazione del carbonato in un suolo
10	Analisi gascromatografica di un olio
TESTI	APPUNTI DELLE LEZIONI
CONSIGLIATI	Skoog, West, Holler, Fondamenti di Chimica Analitica, Edises
	Harris, Chimica Analitica Quantitativa, Zanichelli
	Skoog, Leary, Chimica Analitica Strumentale, Edises

OBIETTIVI FORMATIVI DEL MODULO 2

Obiettivo del modulo è approfondire la conoscenza della strumentazione di cui il chimico analitico dispone nelle analisi qualitative e quantitative effettuate su qualunque tipo di matrice. In particolare, verrà esaminata la strumentazione adoperata nelle varie tecniche elettroanalitiche (potenziometria, elettrogravimetria, coulombometria, voltammetria ecc.) facendo anche qualche esempio applicativo di ciascuna di esse. Verranno illustrate le parti interne di strumenti per spettrometria UV-Vis molecolare, spettrometria IR, spettrometria atomica in assorbimento (AAS) ed emissione (ICP-AES, ICP-MS ecc). Particolare attenzione sarà rivolta anche alla

strumentazione utilizzata nelle tecniche di separazione cromatografica: gas cromatografia (GC), cromatografia liquida ad elevate prestazioni (HPLC) e cromatografia a fluido supercritico (SFC). Completano il corso alcune conoscenze sulle tecniche elettroforetiche: elettroforesi capillare a zone (CZE), elettroforesi capillare elettrocinetica micellare (MECC). Numerosi esempi riguardanti l'applicazione delle tecniche strumentali trattate saranno fatti durante il corso.

MODULO	CHIMICA ANALITICA STRUMENTALE
ORE FRONTALI	LEZIONI FRONTALI
3	Presentazione del corso, ruolo della chimica analitica nelle scienze, analisi quantitativa e qualitativa, fasi di una tipica analisi quantitativa, rassegna delle principali tecniche analitiche strumentali, cenni sul trattamento e sulla valutazione del dato analitico.
6	Strumentazione utilizzata nelle varie tecniche elettroanalitiche: potenziometria, elettrogravimetria, coulombometria e voltammetria. Applicazioni.
3	Proprietà della radiazione elettromagnetica, spettro elettromagnetico, assorbimento ed emissione della radiazione elettromagnetica.
7	Strumenti per spettroscopia ottica, sorgenti di radiazioni, sorgenti laser e loro meccanismo d'azione, selettori di lunghezza d'onda (monocromatori e filtri), rivelatori di radiazioni e rivelatori di calore, cenni sull'utilizzo di fibre ottiche in spettroscopia ottica, spettroscopia di assorbimento molecolare nell'ultravioletto e nel visibile, Trasmittanza, Assorbanza e legge di Beer, applicazioni e deviazioni dalla legge di Beer, errori in spettroscopia, strumenti a singolo raggio e a doppio raggio, applicazioni della spettroscopia di assorbimento molecolare UV-Vis, analisi quantitativa, misure di concentrazione di specie singole ed analisi di miscele, titolazioni fotometriche.
5	Spettroscopia di fluorescenza, fosforescenza e chemiluminescenza, fluorimetri, spettrofluorimetri e fosforimetri, cenni di spettroscopia nell'infrarosso, spettrofotometri a reticolo di dispersione, strumenti FTIR, applicazioni qualitative e quantitative.
4	Origine degli spettri atomici, spettroscopia atomica basata sull'atomizzazione con fiamma, spettroscopia atomica con atomizzatori elettrotermici, caratteristiche strumentali, sorgenti di radiazioni a righe in spettroscopia di assorbimento atomico (AA)
3	interferenze spettrali e chimiche nelle misure in assorbimento, metodi di correzione dell'assorbimento di fondo (metodo di correzione a due righe, a sorgente continua, basata sull'effetto Zeeman e sull'autoinversione della sorgente), analisi quantitativa mediante spettroscopia AA.
4	Metodi di emissione atomica con sorgenti a fiamma e con sorgenti a plasma, caratteristiche strumentali, plasma a corrente continua (DCP) e plasma ad accoppiamento induttivo (ICP), nebulizzatori, analisi quantitativa e qualitativa mediante spettroscopia di emissione atomica, tecniche ICP-AES e ICP-MS.
3	Introduzione alla cromatografia, classificazione delle tecniche cromatografiche, il processo cromatografico, velocità di migrazione dei soluti, allargamento della banda cromatografica ed efficienza di una colonna, selettività di un processo cromatografico, risoluzione della colonna, parametri sui quali intervenire per migliorare la risoluzione di un processo cromatografico, applicazioni.

3	Cromatografia gas-liquido e gas-solido, strumenti per gas-cromatografia,	
	colonne impaccate e capillari, fasi stazionarie, rivelatori per GC, metodi	
	accoppiati GC-MS e GC-FTIR, applicazioni.	
3	Cromatografia liquida classica e ad alta prestazione (HPLC), strumenti per	
	HPLC, pompe, sistemi di iniezione del campione, colonne impaccate e	
	capillari, rivelatori, tecniche cromatografiche per ripartizione, adsorbimento, a	
	scambio ionico, ad esclusione dimensionale, confronto tra GC ed LC.	
2	Caratteristiche dei fluidi supercritici, strumentazione, colonne, fasi stazionarie	
	utilizzate, rivelatori, confronto con le tecniche GC ed HPLC, effetto della	
	pressione sulle separazioni mediante cromatografia a fluido supercritico	
	(SFC).	
2	Cromatografia su carta, cromatografia su strato sottile (TLC), preparazione	
	delle lastre, camere di eluizione, rivelazione degli analiti separati, fasi	
	stazionarie e fasi mobili utilizzate, applicazioni.	
	Cenni di metodologie elettroforetiche, elettroforesi capillare a zone (CZE),	
	flusso elettrosmotico, elettroforesi capillare elettrocinetica micellare (MECC),	
	applicazioni.	
TESTI	APPUNTI DELLE LEZIONI	
CONSIGLIATI	Skoog, West, Holler, Fondamenti di Chimica Analitica, Edises	
	Harris, Chimica Analitica Quantitativa, Zanichelli	
	Skoog, Leary, Chimica Analitica Strumentale, Edises	
	• Rubinson K.A. e Rubinson J.F., Chimica Analitica Strumentale,	
	Zanichelli	