FACOLTÀ	Scienze MM.FF.NN.
ANNO ACCADEMICO	2014-2015
CORSO DI LAUREA	Biotecnologie (cod. 2075)
INSEGNAMENTO	BIOCHIMICA
TIPO DI ATTIVITÀ	Di Base, Caratterizzanti
AMBITO DISCIPLINARE	Discipline biologiche, Discipline
	biotecnologiche comuni
CODICE INSEGNAMENTO	01542
SETTORI SCIENTIFICO DISCIPLINARI	BIO/10
DOCENTE RESPONSABILE	Giulio Ghersi
	Professore Associato
	Università di Palermo
CFU	12
NUMERO DI ORE RISERVATE ALLO	196
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	104
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica Organica
ANNO DI CORSO	Secondo anno
SEDE DI SVOLGIMENTO DELLE	Aula 7 e laboratori didattici, Dip. STEMBIO,
LEZIONI	Viale delle Scienze, Ed. 16
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, esercitazioni in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale finale; Prova Scritta in itinere
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il calendario didattico sul sito del
DIDATTICHE	CdL.
	(http://www.scienze.unipa.it/biotecnologie/biote
	<pre>cno/cdl_calendari.php)</pre>
ORARIO DI RICEVIMENTO DEGLI	Previo appuntamento: Tel: 091/23897409, e-
STUDENTI	mail: giulio.ghersi@unipa.it

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione:

Alla fine del corso lo studente deve avere acquisito le conoscenze di base relative alla struttura e funzione delle proteine con particolare riferimento agli enzimi. Deve avere pure conoscenza dei meccanismi di trasporto e trasduzione del segnale cellulare. Come pure relativamente alle vie metaboliche principali.

Lo studente dovrà sapere comunicare scientificamente circa la composizione amminoacidica e le caratteristiche strutturali/funzionali delle proteine.

Capacità di applicare conoscenza e comprensione:

Lo studente dovrà avere chiaro come determinare le caratteristiche chimico/fisiche di polipeptidi; quale metodiche dirette ed indirette utilizzare per purificarle e saggiarle nella loro conformazione nativa. Deve sapere seguire una via metabolica nelle sue fasi.

Autonomia di giudizio:

Lo studente deve essere in grado di capire se è meglio utilizzare un determinato enzima rispetto un altro in una applicazione metabolica o sperimentale. Se sfruttare le caratteristiche chimiche e/o fisiche per purificare un determinato polipeptide. Come è meglio procedere per valutare le caratteristiche strutturali funzionali delle proteine.

Abilità comunicative:

Lo studente deve avere proprietà di linguaggio relativamente alle proteine, alla loro classificazione e alle caratteristiche strutturali/funzionali.

Capacità d'apprendimento:

Per un corretto apprendimento lo studente deve avere basi solide di chimica generale inorganica ed organica; come pure, conoscenze almeno di base della matematica e fisica elementare.

OBIETTIVI FORMATIVI DEL CORSO

La finalità del corso è quella di far acquisire allo studente le conoscenze di base relative alla struttura e funzione delle proteine, con particolare riferimento agli enzimi, ai meccanismi di trasporto e trasduzione del segnale cellulare e alle vie metaboliche principali. Lo studente dovrà sapere comunicare scientificamente circa la composizione amminoacidica e le caratteristiche strutturali/funzionali delle proteine.

Strutturan/Tunzionan	•
ORE	LEZIONI FRONTALI
4	Caratteristiche degli organismi viventi. Composizione degli organismi viventi. Importanza delle interazioni deboli per l'acquisizione della struttura tridimensionale delle macromolecole e per la formazione di strutture cellulari. Gli amino-acidi, caratteristiche comuni e suddivisione in gruppi.
8	Le proteine: struttura primaria, secondaria, supersecondaria, terziaria e quaternaria delle proteine. Domini strutturali. Proteine semplici e proteine coniugate (Glicoproteine e proteoglicani) Modifiche post-traduzionali delle proteine. Classificazione delle proteine. Proteine coniugate: struttura e ruolo delle glicoproteine e dei proteoglicani. L'evoluzione delle proteine: p.e.u. Duplicazione genica e famiglie di proteine. Ricombinazione di esoni e proteine mosaico.
8	Mioglobina ed Emoglobina (Curve di ossigenazione; Grafico di Hill; Significato della P ₅₀ ; Effetto Bohr ed effetto del pH e del 2,3 BPG sull'ossigenazione del1'emoglobina. Emoglobine fetali ed emoglobine patologiche. Modelli per il comportamento allosterico delle proteine.
16	Gli enzimi: generalità e meccanismo di azione. Meccanismo di azione del: Lisozima Meccanismo di azione: Chimotripsina (serino proteasi). Meccanismo di azione: Transaminasi. Coenzimi, gruppi prostetici e vitamine idrosolubili. Cinetica dello stato stazionario (Significato diVo.; V max; Km). Grafico doppi reciproci. Cinetica degli enzimi con più substrati. Numero di turnover e misure internazionali di attività enzimatica. Attività specifica. Sistemi multienzimatici ed enzimi regolatori. La modulazione covalente. Gli isoenzimi. Gli enzimi allosterici. Gli inibitori enzimatici competitivi, in e non competitivi e il grafico dei doppi reciproci.
18	Membrane cellulari struttura e funzione. Meccanismi di trasporto passivo ed attivo. Recettori di membrana e meccanismi di traduzione del segnale.
8	Metabolismo, anabolismo e catabolismo. Le vie metaboliche principali. Metabolismo degli zuccheri: Digestione dei polisaccaridi. Trasporto del glucosio nelle cellule e sua fosforilazione. Glicogenolisi. Glicolisi. Fermentazione anaerobica. Regolazione ormonale e a feed-back della glicogenolisi e della glicolisi. Fosforilazione ossidativi. Gluconeogenesi e sintesi del glicogeno e loro regolazione.
6	Metabolismo dei lipidi: Digestione, assorbimento, traslocazione, deposito e mobilitazione dei lipidi. Ruolo delle proteine del plasma. Metabolismo dei

	fosfolipidi e sfingolipidi. Sintesi di acidi grassi. Degradazione del colesterolo sintesi degli acidi biliari. Regolazione ormonale e a feed-back del metabolismo dei lipidi
6	Metabolismo delle proteine: Digestione delle proteine della dieta ed assorbimento degli amminoacidi. Turnover delle proteine. Degradazione
	mediata da lisosomi ed ubiquitina. Catabolismo dello scheletro di carbonio degli amminoaacidi: amminoacidi glucogenici e chetogenici
6	Metabolismo degli acidi nucleici: degradazione degli acidi nucleici, di nucleotidi e basi pirimidiniche. Degradazione delle purine e secrezione dell'acido urico. Biosintesi di basi puriniche e pirimidiniche. Conversione di ribonucleotidi in deoxiribonucleotidi
ORE	ESERCITAZIONI O LABORATORIO
4	Metodi estrattivi per proteine. Solubilizzazione e precipitazione. Omogeneizzazione. Analisi proteica mediante metodi colorimetrici.
4	Centrifugazione, principi generali. Centrifugazione differenziale, su gradiente ed isopicnica.
4	Metodi cromatografici, principi generali. Cromatografia per esclusione molecolare, scambio ionico ed affinità.
6	Metodi elettroforetici. Elettroforesi su acetato di cellulosa. SDS-PAGE.
6	Metodi immunologici per l'identificazione e quantificazione di proteine. Immunoblotting ed ELISA.
TESTI	Garrett & Grisham. Principi di Biochimica, Piccin
	1 '
CONSIGLIATI	Campbell & Farrell, Biochimica, EdiSES