FACOLTÀ	SCIENZE MM. FF. NN.
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA MAGISTRALE	MATEMATICA
INSEGNAMENTO	LABORATORIO DI FISICA
TIPO DI ATTIVITÀ	Affine integrativa
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	04190
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO	FIS/01
DISCIPLINARI	
DOCENTE TITOLARE	MARIA LI VIGNI
	PROFESSORE ASSOCIATO
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE	82
ALLO STUDIO PERSONALE	
NUMERO DI ORE RISERVATE	68
ALLE ATTIVITÀ DIDATTICHE	
ASSISTITE	
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Dipartimento di Matematica e Informatica,
LEZIONI	Dipartimento di Fisica, Laboratori didattici della
	Facoltà di Scienze MM. FF. NN.
ORGANIZZAZIONE DELLA	Lezioni frontali, Esercitazioni in aula, Esercitazioni in
DIDATTICA	laboratorio
MODALITÀ DI FREQUENZA	Obbligatoria esclusivamente per le esercitazioni in
	laboratorio
METODI DI VALUTAZIONE	Prova Orale, Prova Scritta, Relazioni sulle attività di
	laboratorio
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultabile al sito:
DIDATTICHE ODA DIO DI DICEVIMENTO DECLI	http://www.scienze.unipa.it/specmatematica/specmate/
ORARIO DI RICEVIMENTO DEGLI	Giovedì 16-18 o per appuntamento
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

L'acquisizione dei crediti assegnati a questo insegnamento consente agli studenti di acquisire:

- competenze operative e di laboratorio;
- capacità di organizzare un programma di misura, di saper raccogliere e analizzare i dati, di valutare le incertezze di misura stimando i diversi contributi sistematici e casuali;

Capacità di applicare conoscenza e comprensione

Al termine di questo insegnamento gli studenti:

sanno applicare le proprie conoscenze, relative alla fisica di base, alla soluzione di problemi qualitativi e quantitativi nell'ambito della fisica generale;

- possiedono abilità pratiche nella fisica di base acquisite durante l'attività di laboratorio;
- utilizzano in modo sicuro strumentazione di laboratorio e tecniche per l'analisi dei dati;

Autonomia di giudizio

L'impostazione delle prove di laboratorio, indirizzate al lavoro di gruppo e alla stesura di relazioni scritte, garantiscono la maturazione di una significativa autonomia degli allievi nel formulare valutazioni e giudizi, nell'analizzare i fatti, nel formulare ipotesi e affrontare problemi nuovi. In particolare, al termine di questo insegnamento gli studenti:

- sono capaci di raccogliere ed interpretare dati scientifici derivati dall'osservazione e dalla misurazione in laboratorio;
- sono in grado di comprendere il significato di misure di laboratorio.

Abilità comunicative

Adeguate competenze e strumenti per la comunicazione e la gestione dell'informazione sono acquisite dagli studenti:

- attraverso la preparazione di relazioni scritte sulle attività di laboratorio;
- attraverso la prova di esame sia in forma scritta sia in forma orale.
- attraverso il lavoro di gruppo nelle attività di laboratorio.

Capacità d'apprendimento

L'attività di laboratorio svolta permette di sviluppare una autonomia e una mentalità flessibile che consentono agli studenti di inserirsi prontamente negli ambienti di lavoro, adattandosi facilmente a nuove problematiche.

OBIETTIVI FORMATIVI DEL MODULO

La parte di lezioni frontali ed esercitazioni in aula si propone di dare i concetti basilari della teoria degli errori per una corretta interpretazione dei dati raccolti nelle esperienze di laboratorio. Obiettivo della parte sperimentale è quello di far acquisire agli studenti: capacità di uso di strumentazione, analisi ed interpretazione di risultati di esperimenti riguardanti la fisica di base.

MODULO	LABORATORIO DI FISICA
ORE FRONTALI	LEZIONI FRONTALI
3	Introduzione e obiettivi del corso. Metodi di misura e caratteristiche degli strumenti. Errori
	sperimentali come incertezze sulle misure. Stima degli errori nelle misure dirette. Cifre
	significative. Confronto di due misure e compatibilità. Confronto tra valori misurati e
	accettati, discrepanza. Errore assoluto ed errore relativo.
2	Incertezza nelle misure indirette, esempi. Errore casuale e sistematico. Errori massimi e loro
	propagazione nelle misure indirette. Formula generale della propagazione degli errori massimi
	per una funzione di una o più variabili. Errori dipendenti e indipendenti. Compensazione degli
	errori e somma in quadratura.
5	Rappresentazione grafica di risultati sperimentali e relativi errori. Determinazione grafica dei
	parametri caratteristici di una funzione lineare, stima dell'errore massimo. Funzioni
	linearizzabili e loro rappresentazione grafica: uso delle scale logaritmiche.
14	Errore nelle misure ripetibili: media, deviazione, deviazione standard e deviazione standard
	della media. Propagazione delle deviazione standard e della deviazione standard della media.
	Istogrammi a barre e a intervalli. Funzione di distribuzione di Gauss per descrivere gli errori
	casuali. Significato della deviazione standard e livelli di confidenza. Combinazione di errori di
	diverso tipo e/o ottenuti con metodi diversi. La media pesata e la sua incertezza. Il metodo dei
	minimi quadrati pesati e non. Il fitting lineare con il metodo dei minimi quadrati e incertezza
	sui parametri caratteristici.
4	ESERCITAZIONI IN AULA
4	Esercitazioni sulla rappresentazione grafica. Esempi di funzioni linearizzabili con l'uso delle
	scale log-log, semilog. Esercitazioni sulla determinazione grafica dei parametri caratteristici di alcune funzioni da una serie di dati sperimentali e stima degli errori.
2	Esercizi sulla propagazione degli errori.
2	Esercizi sugli stogrammi.
4	Spiegazione delle esperienze di laboratorio.
4	spiegazione dene espenenze di favoratorio.
	LABORATORIO
4	Utilizzo del software Origin per la rappresentazione grafica e l'analisi dei dati sperimentali.
6	Esperienza per la determinazione della densità di un materiale e relativa analisi dati

6	Misura della caratteristica I-V di un resistore e determinazione della sua resistenza elettrica. Analisi dati.
6	Studio sperimentale del circuito RC in regime impulsivo come esempio di legge esponenziale. Analisi dati.
10	Determinazione del periodo di oscillazione di un pendolo semplice al variare della lunghezza del pendolo. Analisi statistica dei dati e determinazione dell'accelerazione di gravità.
TESTI CONSIGLIATI	John R. Taylor - INTRODUZIONE ALL'ANALISI DEGLI ERRORI: Lo studio delle incertezze nelle misure fisiche - Zanichelli (2000) Marco Severi: INTRODUZIONE ALLA ESPERIMENTAZIONE FISICA, Zanichelli (1982) Dispense curate dal docente