SCUOLA	SCIENZE di BASE E APPLICATE
ANNO ACCADEMICO	2016/2017
CORSO DI LAUREA	Chimica
INSEGNAMENTO	Biochimica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline chimiche organiche e biochimiche
CODICE INSEGNAMENTO	01542
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	BIO/10
DOCENTE RESPONSABILE	Giuseppe Calvaruso
	Professore Ordinario
	Università di Palermo
CFU	8
NUMERO DI ORE RISERVATE ALLO	136
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	64
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica generale ed inorganica
	Chimica organica
ANNO DI CORSO	Terzo
SEDE DI SVOLGIMENTO DELLE	Aula D ed 17 Dipartimenti Chimici
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	Prova Orale (Prova in itinere)
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Lunedì-Mercoledì-Venerdì
DIDATTICHE	ore 11.00-13.00
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni ore 14.00-15.00
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Comprensione, a livello molecolare, dei processi chimici associati alle cellule viventi attraverso lo studio della struttura, delle proprietà, delle funzioni delle biomolecole e dei processi metabolici a cui sono soggetti.

Capacità di applicare conoscenza e comprensione

Capacità di rielaborare ed integrare in modo critico i processi metabolici in considerazione che gli stessi vengono studiati uno alla volta ma nei sistemi viventi molti di questi processi operano contemporaneamente.

Autonomia di giudizio

Essere in grado di collegare autonomamente le proprietà chimiche dei gruppi funzionali delle biomolecole con le funzioni da esse svolte all'interno degli organismi viventi comprendendo altresì gli adattamenti subiti nel corso dell'evoluzione. Essere in grado di indicare percorsi metabolici alternativi conseguenti ad alterazioni fisio-patologiche.

Abilità comunicative

Capacità di esprimere in modo chiaro, conciso e con una adeguata terminologia scientifica le conoscenze acquisite.

Capacità d'apprendimento

La capacità di apprendimento degli studenti sarà valutata attraverso l'interazione instaurata con il docente durante lo svolgimento del corso, durante gli incontri che normalmente precedono l'esame e contestualmente alla stessa prova di esame.

OBIETTIVI FORMATIVI DEL CORSO

Il corso si propone di fornire agli studenti le basi molecolari dei processi biochimici e dei meccanismi di regolazione degli stessi. In particolare, oggetto di studio sono la struttura e le trasformazioni dei componenti delle cellule quali proteine, carboidrati, lipidi, acidi nucleici e altre biomolecole.

CORSO	BIOCHIMICA
64 ORE FRONTALI	LEZIONI FRONTALI
1	Presentazione del corso e delle sue finalità
7	Aminoacidi: struttura e funzioni – Proteine: livelli strutturali, proteine fibrose
	e globulari, folding, famiglie di proteine, proteine plasmatiche.
6	Proteine trasportatrici di ossigeno – Mioglobina – Emoglobina: struttura,
	funzioni, proprietà allosteriche, emoglobine patologiche, sintesi e
	degradazione dell'eme.
10	Enzimi: complesso ES, sito attivo, meccanismi generali della catalisi
	enzimatica, cinetica enzimatica, inibizione farmacologica, enzimi allosterici,
	regolazione enzimatica, coenzimi, vitamine.
1	Glucidi di interesse biologico: monosaccaridi e loro derivati, disaccaridi,
	polisaccaridi.
2	Lipidi: acidi grassi, eicosanoidi, gliceridi, cere, steridi, fosfolipidi, glicolipidi,
	colesterolo, acidi e sali biliari, ormoni steroidei, Vit. D, metabolismo del
	calcio e del fosfato, biomembrane.
1	Trasporto di membrana.
1	Nucleotidi – Acidi nucleici: DNA, RNA.
6	Trasduzione del segnale – Meccanismi generali dell'azione ormonale:
	complesso ormone-recettore, cascata dello AMP ciclico, proteine G, cascata
	dei fosfoinositidi, proteine chinasi calcio-calmodulina dipendenti, GMP
	ciclico, recettori a tirosina chinasi, meccanismo d'azione dell'insulina,
	meccanismo d'azione degli ormoni steroidei e tiroidei.
1	Introduzione allo studio del metabolismo.
11	Metabolismo glucidico e sua regolazione metabolica ed ormonale:
	glicogenosintesi e glicogenolisi, glicolisi e glicogenesi, decarbossilazione
	ossidativa dell'acido piruvico, ciclo di Krebs, ciclo dell'acido gliossilico, via
	dei pentosi.
5	Bioenergetica: fosforilazione ossidativa, fosforilazione a livello del substrato.
6	Metabolismo lipidico e sua regolazione: trasporto dei lipidi e lipoproteine
	plasmatiche, sintesi e degradazione degli acidi grassi, sintesi e degradazione
	dei trigliceridi e dei lipidi complessi, chetogenesi e chetolisi, sintesi del
,	colesterolo.
4	Metabolismo degli aminoacidi: transaminazione, desaminazione,
	transdesaminazione, destino dell'ammoniaca, ureogenesi, glutamina, amine
	biogene, poliamine.
1	Sintesi e degradazione dei nucleotidi purinici e pirimidinici.

1	Metabolismo idrico-salino: ADH, aldosterone, sistema renina-angiotensina.
	ESERCITAZIONI
	Non previste
TESTI	- I Principi di Biochimica di Lehninger: D.L. Nelson, M.M. Cox (Zanichelli)
CONSIGLIATI	- Biochimica: J.M. Berg, J.L. Tymoczko, L. Stryer (Zanichelli)
	- Harper Biochimica: R.K. Murray, D.K. Grenner, P.A. Mayers, W.Rodwell
	(Mc Grow-Hill)
	- Principi di Biochimica: R.H. Garret, C.M. Grisham (Piccin)
	- Biochimica: J.M. Devlin (Gnocchi)
	- Biochimica: C.K. Mathews, K.E. Van Holde, K.G. Ahern (Ambrosiana)
	- Biochimica Medica: G. Tettamanti, N. Siliprandi (Piccin)