FACOLTÀ	SCIENZE MM.FF.NN:
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA (o LAUREA	INFORMATICA
MAGISTRALE)	
INSEGNAMENTO	Metodi Matematici per l'Informatica
TIPO DI ATTIVITÀ	Di base
AMBITO DISCIPLINARE	Informatica di Base
CODICE INSEGNAMENTO	16448
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	INF/01
DOCENTE RESPONSABILE	MANTACI SABRINA
	Professore Associato
	Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	102
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	48
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Io
SEDE DI SVOLGIMENTO DELLE	Aula 4, Dipartimento di Matematica
LEZIONI	e Informatica, Via Archirafi 34, Palermo
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta e Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Vedere Calendario Lezioni
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedi 15.00-17.00
STUDENTI	Giovedì 15.00-17.00

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione: Il corso mira a far conoscere allo studente alcuni principi di base della matematica, con particolare riferimento alla logica matematica, all'aritmetica dei numeri interi, alle strutture combinatorie e a tecniche combinatorie applicate a problemi di conteggio. Vuole inoltre sviluppare la capacità di comprendere le metodologie formali per la risoluzione dei problemi. Capacità di applicare conoscenza e comprensione: Lo scopo del corso è quello di mettere lo studente nelle condizioni di sapere applicare le conoscenze e le tecniche matematiche acquisite ad argomenti legati ai diversi settori dell'Informatica.

Autonomia di giudizio: Durante il corso lo studente acquisisce la capacità di valutare quali delle conoscenze e tecniche acquisite durante il corso possono essere applicate alla risoluzione di problemi algebrici e combinatori. Acquisizione di metodologie di indagine e degli strumenti matematici di supporto delle conoscenze informatiche.

Abilità comunicative: Capacità di esporre in modo coerente e formale le conoscenze matematiche acquisite

Capacità d'apprendimento: Essere in grado di apprendere in maniera autonoma conoscenze matematiche supplementari con la lettura di testi di medio livello

OBIETTIVI FORMATIVI:

Alla fine del corso lo studente deve avere acquisito una preparazione matematica di base ed essere in grado di maneggiare con familiarità alcune nozioni relative agli insiemi discreti, ma soprattutto gli strumenti, le metodologie di ragionamento, le tecniche risolutive e dimostrative connesse con il loro studio. Le nozioni e le metodologie apprese infatti troveranno applicazione nei vari problemi dell'Informatica che affronteranno nel corso di studi.

ORE FRONTALI	LEZIONI FRONTALI	
4	Elementi di Logica Matematica. Proposizioni e predicati. Operatori Logici. Metodi di	
	dimostrazione (diretta, per assurdo, per contrapposizione). Equivalenze logiche. Operatori	
	esistenziali e universali	
16	Teoria degli insiemi. Terminologia fondamentale. Definizione di insiemi in modo esplicito e	
	in modo implicito. Inclusioni. Operatori insiemistici. Diagrammi di Eulero-Venn. Prodotto	
	Cartesiano. Relazioni fra insiemi. Relazione di equivalenza e relazione d'ordine. Classi di	
	equivalenza. Congruenze aritmetiche. Insiemi con operazioni (Monoidi, Semigruppi e	
	Gruppi). Proprietà delle classi resto modulo m. Funzioni. Concetto di funzione iniettiva e	
	suriettiva. Cardinalità di un insieme. Composizione di funzioni, funzione inversa	
10	Aritmetica degli interi. Assioma del minimo. Principio di induzione (prima e seconda forma).	
	Applicazioni: Cardinalità dell'insieme delle parti. Formula di Gauss. Progressione	
	geometrica. Successioni. Successione di Fibonacci. Il problema delle Torri di Hanoi.	
12	Calcolo combinatorio: Il principio delle scelte multiple. Applicazioni: numero di funzioni fra	
	insiemi finiti. Numero di funzioni iniettive fra insiemi finiti. Numero di funzioni biiettive tra	
	insiemi finiti. Esercizi. Disposizioni semplici e con ripetizione. Permutazioni. Combinazioni	
	semplici e con ripetizione. Significato insiemistico. Proprietà del coefficiente binomiale.	
	Partizioni e Il principio dei cassetti. Il principio di inclusione-esclusione. Uso positivo e uso	
	negativo del principio di inclusione-esclusione. Applicazioni. Il principio del contare per	
	righe e per colonne.	
6	Divisori e Multipli. L'algoritmo della divisione. Massimo Comun divisore. L'algoritmo di	
	Euclide per il Massimo Comun Divisore. Numeri primi. Fattorizzazione in numeri primi. Il	
	teorema della fattorizzazione unica.	
TOTAL COMPA		
TESTI	Facchini "Algebra e Matematica Discreta" Ed. Decibel-Zanichelli	
CONSIGLIATI	Piacentini Cattaneo "Matematica Discreta ed Applicazioni" Ed. Zanichelli	
	Biggs. Discrete Mathematics. Oxford University press	
	Rosen. Discrete mathematics and Applications. The Random House, New York.	
	Appunti redatti dal docente e forniti agli student tramite il portale del corso di laurea.	