FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2015/2016
CORSO DI LAUREA TRIENNALE	Scienze Fisiche (Codice: 2124)
INSEGNAMENTO	Laboratorio di Fisica Moderna
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Sperimentale applicativo
CODICE INSEGNAMENTO	14031
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	FIS/01
DOCENTE RESPONSABILE	Marco Cannas
	Professore Associato Università di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	78
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	72
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Nessuna
ANNO DI CORSO	Terzo
SEDE DI SVOLGIMENTO DELLE	Aula D del Dipartimento di Fisica e Chimica
LEZIONI	Via Archirafi 36; Laboratorio didattico D del
	DiFC via Archirafi 36.
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in Laboratorio
MODALITÀ DI FREQUENZA	Obbligatoria per le attività di laboratorio
METODI DI VALUTAZIONE	Prova Orale
	Discussione di una esercitazione di laboratorio
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo semestre
CALENDARIO DELLE ATTIVITÀ	Secondo il calendario approvato dal CdS
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lunedì, Mercoledì; orario dalle 14 alle16
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Apprendimento delle metodologie sperimentali applicate per lo studio di alcuni processi fisici che evidenziano la natura corpuscolare della luce, per lo studio delle proprietà atomiche e dei semiconduttori. Sviluppo della capacità di eseguire delle misure in autonomia e di interpretare i risultati alla luce delle conoscenze teoriche

Capacità di applicare conoscenza e comprensione

Le esperienze svolte mirano a portare gli allievi a raggiungere un livello di autonomia sufficiente all'acquisizione di dati sperimentali e alla capacità di sviluppare modelli interpretativi per analizzare gli esperimenti attraverso adeguati strumenti matematici.

Autonomia di giudizio

Capacità di uso della strumentazione per lo studio di alcuni esperimenti di Fisica Moderna; Capacità di sviluppare un approccio rigoroso e critico nell'analisi e nell'interpretazione dei risultati sperimentali ottenuti.

Abilità comunicative

Capacità di illustrare le modalità di misura, di spiegare i risultati dell'attività di laboratorio, mettere a fuoco gli elementi fondamentali che scaturiscono dai fenomeni studiati, e di esporre in maniera

sistematica gli argomenti.

Capacità d'apprendimento

Essere in grado sulla base delle competenze acquisite nel corso di analizzare ed interpretare i risultati sperimentali ottenuti al fine di ottenere informazioni rilevanti per la comprensione di alcuni argomenti di Fisica Moderna.

OBIETTIVI FORMATIVI DEL MODULO

La parte di lezioni frontali si propone di dare i concetti basilari sugli esperimenti chiave della fisica moderna. L'attività di laboratorio mira a far e acquisire agli studenti la capacità di usare set-up sperimentali per rivelare fenomeni di interazione radiazione-materia, analizzare e interpretare i risultati da un punto di vista microscopico.

MODULO	Laboratorio di Fisica Moderna	
ORE FRONTALI	LEZIONI FRONTALI	
	Natura corpuscolare della radiazione elettromagnetica	
5	Fenomenologia associata alla radiazione termica (legge di <i>Wien</i> , legge di <i>Stefan-Boltzmann</i>), spettro della radiazione di corpo nero, legge classica di <i>Rayleigh-Jeans</i> e catastrofe ultravioletta, quantizzazione dell'energia degli oscillatori e legge di <i>Planck</i> .	
4	Effetto fotoelettrico e teoria di <i>Einstein</i> sulla quantizzazione della radiazione elettromagnetica (fotone).	
	Proprietà atomiche	
6	Spettro di un atomo di idrogeno (serie di <i>Lyman</i> , <i>Balmer</i> e <i>Pashen</i> , formula di <i>Rydberg-Ritz</i>), modello di <i>Bohr</i> dell'atomo di idrogeno, derivazione delle orbite stazionarie e dei livelli energetici.	
	Proprietà dei semiconduttori	
3	Semiconduttori puri e drogati. La giunzione p-n. caratteristica I-V di un diodo.	
3	Principio di funzionamento di un fotodiodo.	
3	Fenomenologia dell'effetto Hall. Effetto Hall in conduttori e semiconduttori.	
	ESERCITAZIONI IN LABORATORIO	
10	1. Rivelazione della radiazione emessa da un corpo nero e verifica sperimentale delle leggi di Wien e di Stefan-Boltzmann.	
10	2. Rivelazione dell'effetto fotoelettrico e determinazione della costante di Plank.	
10	3. Rivelazione di spettri ottici generati da gas di idrogeno e di elio	
8	4. Curva di risposta di un fotodiodo.	
10	5. Verifica sperimentale dell'effetto Hall e determinazione della concentrazione di portatori in un semiconduttore drogato.	
TESTI	K.S. Krane: Modern Physics, John Wiley & Sons	
CONSIGLIATI	D. Hallyday, R. Resnick, J. Walker: Fondamenti di Fisica (FISICA MODERNA), <i>Casa Editrice Ambrosiana</i>	
	P. A. Tipler: Corso di Fisica (FISICA MODERNA), Zanichelli	