STRUTTURA	Scuola Politecnica - DICGIM
ANNO ACCADEMICO	2014-2015
CORSO DI LAUREA MAGISTRALE	Ingegneria Informatica
INSEGNAMENTO	Informatica Grafica
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria Informatica
CODICE INSEGNAMENTO	08978
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/05
DOCENTE RESPONSABILE	Roberto Pirrone
BOCEIVE RESTONDIE	Professore Associato
	Università degli Studi di Palermo
	roberto.pirrone@unipa.it
CFU	9
NUMERO DI ORE RISERVATE ALLO	144
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	81
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Conoscenze di geometria e algebra vettoriale;
	conoscenze avanzate di algoritmi e strutture
	dati; programmazione C++, Java e Javascript;
	elaborazione di immagini.
	Si consiglia di aver almeno seguito le lezioni
	della materia "Architetture e progetto di sistemi
	web".
ANNO DI CORSO	Secondo
SEDE DI SVOLGIMENTO DELLE	Consultare il sito politecnica.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali;
	Analisi e discussione in aula di casi di studio
	relativi a temi avanzati di computer grafica;
	Esercitazioni teoriche;
	Esercitazioni di gruppo per sviluppo di
	applicazioni grafiche complesse;
	Presentazione e discussione in aula di progetti e
	implementazioni;
MODALIE DI EDECLIENZA	Dibattiti guidati in aula su temi di ricerca.
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova scritta volta ad accertare il possesso delle
	conoscenze teoriche acquisite durante il corso
	sia della capacità di applicazione autonoma delle conoscenze apprese durante le
	i delle conoscenze apprese difrante le
	==
	esercitazioni;
	esercitazioni; Prova orale mirata alla discussione di un caso di
	esercitazioni; Prova orale mirata alla discussione di un caso di studio proposto dal docente;
	esercitazioni; Prova orale mirata alla discussione di un caso di studio proposto dal docente; Presentazione e discussione di una tesina
	esercitazioni; Prova orale mirata alla discussione di un caso di studio proposto dal docente; Presentazione e discussione di una tesina concordata di gruppo e relativa a un tema di
TIPO DI VALUTAZIONE	esercitazioni; Prova orale mirata alla discussione di un caso di studio proposto dal docente; Presentazione e discussione di una tesina

PERIODO DELLE LEZIONI	Consultare il sito politecnica.unipa.it
CALENDARIO DELLE ATTIVITÀ	Consultare il sito politecnica.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedì ore 11.00-13.00 presso Viale delle
STUDENTI	Scienze, Edificio 6, III piano, Stanza 8.
	Il ricevimento può essere spostato, previo
	avviso, per impegni istituzionali.
	Per altre date/orari si prega di inviare una e-mail
	a roberto.pirrone@unipa.it

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente, al termine del corso, avrà acquisito conoscenze e metodologie per affrontare e risolvere in maniera autonoma le problematiche legate allo sviluppo di software per la Computer Graphics. Lo studente conoscerà i fondamenti matematici della disciplina, apprenderà il concetto di pipeline grafica e come i differenti algoritmi s'inseriscano all'interno di questo flusso di lavoro ideale. Lo studente conoscerà come la pipeline grafica viene implementata nei dispositivi hardware di rendering. Lo studente conoscerà le diverse tipologie di rendering fotorealistico nonché le teorie fisiche che stanno alla base di questi processi e la loro possibile composizione. Lo studente conoscerà le teorie alla base della modellazione solida e i principi dell'animazione.

Per il raggiungimento di quest'obiettivo il corso comprende: lezioni frontali, analisi e discussione di casi di studio legati a temi avanzati di computer grafica, seminari e dibattiti guidati su temi di ricerca.

Per la verifica di quest'obiettivo l'esame comprende la verifica scritta sugli argomenti del programma, la discussione sui casi di studio presentati e su possibili varianti proposte dal docente e sulla tesina preparata autonomamente su temi di ricerca.

Capacità di applicare conoscenza e comprensione

Lo studente avrà acquisito conoscenze e metodologie per analizzare e risolvere problemi tipici legati alla sintesi di immagini digitali artificiali con le tecniche della Computer Graphics. Egli conoscerà tutte le principali tecniche algoritmiche impiegate nel campo della grafica ed avrà competenze specifiche per quanto riguarda l'uso delle librerie grafiche WebGL, OpenGL ES Shading Language e CUDA in linguaggio C++ e Javascript. Egli sarà in grado di selezionare ed utilizzare gli strumenti e/o i linguaggi più idonei allo sviluppo delle soluzioni software più adatte alla tipologia dei vari problemi che si troverà ad affrontare. Infine sarà introdotto alla conoscenza elementare di un framework completo per lo sviluppo e la distribuzione di applicazioni grafiche qual è Unity 3D.

Per il raggiungimento di quest'obiettivo il corso comprende: esercitazioni teoriche e di gruppo per sviluppo di applicazioni grafiche complesse, la presentazione e discussione in aula dei progetti e implementazioni, la preparazione di una tesina svolta autonomamente su temi di ricerca. Per la verifica di quest'obiettivo l'esame comprende la verifica scritta mirata a consentire il riutilizzo originale degli elaborati software già analizzati durante le esercitazioni teoriche ovvero preparati durante le esercitazioni di gruppo al fine di affrontare un nuovo tema applicativo e la discussione sulla tesina preparata autonomamente su temi di ricerca.

Autonomia di giudizio

Lo studente sarà in grado di svolgere un'analisi comparativa delle caratteristiche di differenti ambienti di sviluppo per la grafica in relazione alla soluzione di problemi specifici. Egli sarà in grado di affrontare problemi non strutturati e prendere decisioni in regime d'incertezza. Attraverso

l'approccio metodologico acquisito durante il corso, egli potrà modellare problematiche complesse nell'ambito della computer grafica.

Per il raggiungimento di quest'obiettivo il corso comprende: analisi e discussione su casi di studio legati a temi avanzati della computer grafica, presentazioni e discussioni in aula di progetti e implementazioni legati alle esercitazioni pratiche di gruppo, preparazione di una tesina svolta autonomamente su temi di ricerca.

Per la verifica di quest'obiettivo l'esame comprende la discussione sui casi di studio presentati e su possibili varianti proposte dal docente e sulla tesina preparata autonomamente su temi di ricerca.

Abilità comunicative

Lo studente sarà in grado di comunicare con competenza e proprietà di linguaggio problematiche complesse di Computer Graphics anche in contesti altamente specializzati.

Per il raggiungimento di quest'obiettivo il corso comprende: esercitazioni di gruppo per sviluppo di applicazioni grafiche complesse, la presentazione e discussione in aula dei progetti e implementazioni, seminari e dibattiti guidati su temi di ricerca.

Per la verifica di quest'obiettivo l'esame comprende la discussione sui casi di studio presentati e su possibili varianti proposte dal docente e sulla tesina preparata autonomamente su temi di ricerca.

Capacità d'apprendimento

Lo studente sarà in grado di affrontare in autonomia qualsiasi problematica concernente la computer grafica. Sarà in grado di approfondire tematiche complesse quali lo sviluppo di sistemi avanzati per l'animazione di scene, il trattamento di modelli geometrici di elevata dimensione e così via.

Per il raggiungimento di quest'obiettivo il corso comprende: analisi e discussione su casi di studio legati a temi avanzati della computer grafica, esercitazioni di gruppo per sviluppo di applicazioni grafiche complesse, presentazioni e discussioni in aula di progetti e implementazioni legati alle esercitazioni pratiche di gruppo, preparazione di una tesina svolta autonomamente su temi di ricerca.

Per la verifica di quest'obiettivo l'esame comprende: la verifica scritta mirata a consentire il riutilizzo originale degli elaborati software già analizzati durante le esercitazioni teoriche ovvero preparati durante le esercitazioni di gruppo al fine di affrontare un nuovo tema applicativo, la discussione sui casi di studio presentati e su possibili varianti proposte dal docente e sulla tesina preparata autonomamente su temi di ricerca.

OBIETTIVI FORMATIVI

Il corso implementa gli obiettivi formativi previsti dal RAD del Corso di Laurea Magistrale in Ingegneria Informatica per quanto riguarda l'informatica grafica.

In accordo agli obiettivi formativi qualificanti della classe Ingegneria Informatica, i laureati magistrali potranno trovare occupazione presso le industrie informatiche avanzate operanti negli ambiti della produzione hardware e software.

Tra i criteri seguiti nella trasformazione del corso di laurea nell'ordinamento 270, gli insegnamenti del corso di laurea, pur senza trascurare i contenuti a ricaduta applicativa diretta, danno ampio spazio alla formazione nelle discipline specialistiche proprie dell'Ingegneria Informatica avanzata quali la computer grafica.

Gli obiettivi formativi specifici del corso di laurea riportati dal RAD sono rivolti al conseguimento da parte dello studente di una solida preparazione sugli aspetti di base e applicativi dell'ingegneria informatica sia negli ambiti tradizionali del progetto, realizzazione e gestione di sistemi e applicazioni informatiche complesse, sia in settori avanzati quali l'informatica grafica.

In accordo con i risultati di apprendimento attesi riportati dal RAD, una volta conseguito il titolo, il laureato magistrale in Ingegneria Informatica avrà conoscenze approfondite delle metodologie e degli strumenti utilizzabili per il progetto e la realizzazione di sistemi informatici anche in settori

avanzati, quali la robotica.

Tra gli sbocchi occupazionali e professionali previsti per i laureati secondo il RAD vi sono le industrie informatiche avanzate operanti negli ambiti della produzione hardware e software.

	INFORMATICA GRAFICA
ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione al Corso
2	Grafica Vettoriale e Raster, Pipeline di Rendering, Shaders e kernel per elaborazione
	parallela. Architettura e funzionamento delle moderne GPU.
4	Matematica per la Computer Graphics
4	Mesh di poligoni, curve e superfici parametriche
2	Modelli geometrici e loro proprietà
2	Trasformazioni geometriche bidimensionali e tridimensionali
3	Trasformazioni proiettive e Viewing
3	Algoritmi di determinazione delle superfici visibili e clipping tridimensionale
3	Algoritmi di illuminamento e di ombreggiatura, BRDF
3	Algoritmi per il tracciamento, antialiasing, riempimento ed il clipping sullo schermo
1	Trasformazioni spaziali di immagini
4	Algoritmi di visualizzazione realistica: applicazione di trame, mutue riflessioni tra oggetti,
	trasparenza
3	Algoritmi di Ray tracing
3	Algoritmo di Radiosity
1	Principi di animazione
1	Rendering di volumi
	ANALISI E DISCUSSIONE DI CASI DI STUDIO
2	NURBS
2	BRDF – Modello di Blinn-Cook-Torrance e simulazione della riflessione diffusiva
2	Ray tracing stocastico
2	Derivazione dell'equazione di radiosity
2	Animazione – strutture articolate e interpolazione delle traiettorie
	ESERCITAZIONI TEORICHE
2	Introduzione alla programmazione WebGL; Riepilogo su Javascript e DOM; cenni di
	HTML5 e dell'elemento <canvas> per il recupero del contesto grafico; Struttura della libreria</canvas>
	WebGL e sue relazioni con gli altri ambienti grafici; ambienti di sviluppo per uso di WebGL.
2	Struttura di un'applicazione WebGL. Creazione di modelli e caricamento di modelli
	geometrici in WebGL tramite oggetti JSON.
2	Visualizzazione della scena in WebGL. Introduzione agli shader ESSL; scrittura di fragment
	shaders per shading di Gouraud e Phong; gestione di luci direzionali e posizionali.
2	Impostazioni della camera e matrici di proiezione: uso della libreria Javascript glMatrix.js e
	uso diretto delle trasformazioni di proiezione all'interno dei vertex shaders.
2	Trasformazioni di modellazione per animazione della scena.
2	Effetti fotorealistici: gestione dei colori, illuminamento da sorgenti multiple, depth testing,
	blending e trasparenza.
2	Texture mapping: gestione delle tessiture in WebGL e all'interno di uno shader; tecniche di
	filtraggio, mipmaps, warping di tessiture.
2	Introduzione al framework Unity 3D
2	Introduzione alla libreria CUDA. Struttura dei kernel. Gestione della memoria.
	ESERCITAZIONI DI GRUPPO PER SVILUPPO DI APPLICAZIONI GRAFICHE
4	Sviluppo di un'applicazione WebGL completa.
4	Introduzione alla libreria CUDA. Esempi di applicazione di kernel CUDA.
	DDEGENG CANANA E DAGGAGGACON ANA ANA
	PRESENTAZIONI E DISCUSSIONI IN AULA
2	Discussione in aula di progetti e implementazioni preparati durante le esercitazioni di gruppo
	SEMINARI E DIBATTITI GUIDATI
	SEMINAMI E DIDATITITI GUIDATI

3	Seminari e dibattiti guidati su temi di ricerca e applicazione della computer grafica anche con
	la partecipazione di esperti del settore
TESTI CONSIGLIATI	- Alan Watt, 3D Computer Graphics - Third Edition, Addison-Wesley Publishing Company ISBN: 978-0201398557
	- Alan Watt & Mark Watt, Advanced Animation and Rendering Techniques, Addisor Wesley Publishing Company, ISBN: 978-0201544121
	- Diego Cantor and Brandon Jones, WebGL Beginner's Guide, Packt Publishing, ISBN: 978-1849691727
	- Andreas Anyuru, Professional WebGL Programming, Wiley, ISBN: 978-1-119-96886-3
	Materiale elettronico sul sito web del docente.
	Siti di riferimento per HTML5, WebGL, ESSL, CUDA:
	http://www.w3schools.com/html5/default.asp
	http://www.khronos.org/
	http://www.khronos.org/webgl/wiki/Main Page
	http://learningwebgl.com/blog/
	http://www.khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.3.pdf
	http://www.khronos.org/opengles/sdk/docs/manglsl/ http://www.opengl.org/
	http://developer.nvidia.com/object/gpucomputing.html
	nup.//developer.nvidia.com/object/gpacomputing.num
	Sito di Unity 3D
	http://unity3d.com