FACOLTÀ	Ingegneria
ANNO ACCADEMICO	2012/2013
CORSO DI LAUREA	Ingegneria Informatica e delle
	Telecomunicazioni
	Classe L-8 – Lauree in Ingegneria
	dell'informazione
INSEGNAMENTO	Fisica I
TIPO DI ATTIVITÀ	Di base
AMBITO DISCIPLINARE	Fisica e chimica
CODICE INSEGNAMENTO	03295
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	FIS/03
DOCENTE RESPONSABILE	Riccardo Burlon
(Primo semestre)	Professore Associato, Università di Palermo
DOCENTE RESPONSABILE	Da individuare
(Secondo semestre)	
CFU	12
NUMERO DI ORE RISERVATE ALLO	180
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	120
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	E' opportuna una conoscenza dei concetti
	fondamentali della matematica di base
ANNO DI CORSO	Primo
SEDE	Consultare il sito www.ingegneria.unipa.it
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni ed esercitazioni frontali
MODALITÀ DI FREQUENZA	Obbligatoria per sostenere le prove in itinere
METODI DI VALUTAZIONE	Prova Scritta e orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Primo e secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Martedi c/o DiFi (edificio 18)
STUDENTI	Ore 15.30-17.30

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Il significato fisico delle leggi e delle variabili meccaniche necessarie per costruire un modello fisico.

I principi di conservazione dell'energia, della quantità di moto e del momento angolare. Legami tra la fisica macroscopica e la fisica microscopica: limiti e validità delle leggi e dei modelli della fisica.

Il concetto di azione a distanza e la sua descrizione come "campi di forze". La fenomenologia elementare e i modelli dei fenomeni elettrici e magnetici.

La fenomenologia delle leggi dell'induzione elettromagnetica. Il significato di energia elettromagnetica e di onda elettromagnetica

Capacità di applicare conoscenza e comprensione

Costruzione di un modello fisico: schematizzazione, osservazione, previsione e verifica sperimentale. La metodologia sperimentale per l'indagine e la descrizione dei fenomeni naturali più semplici.

Risolvere semplici esercizi di meccanica e di elettromagnetismo con particolare attenzione alla capacità di individuazione dei modelli fisici relativi.

Capacità di effettuare stime e calcoli numerici prestando attenzione al numero di cifre significative da usare ed all'analisi

dimensionale delle leggi impiegate

Autonomia di giudizio

Lo studente acquisirà la capacità di comunicare ed esprimere problematiche inerenti l'oggetto del corso.

Capacità d'apprendimento

Risolvere semplici problemi di meccanica e di elettromagnetismo con particolare attenzione alla capacità di individuazione dei modelli fisici relativi. Capacità di seguire, utilizzando le conoscenze acquisite nel corso materie specialistiche del corso di studio quali elettrotecnica, elettronica etc

OBIETTIVI FORMATIVI DEL C ORSO

Obiettivo del corso è acquisire il significato fisico delle leggi e delle variabili meccaniche necessarie per costruire un modello fisico; comprendere i principi di conservazione dell'energia, della quantità di moto e del momento angolare. Legami tra la fisica macroscopica e la fisica microscopica: limiti e validità delle leggi e dei modelli della fisica; acquisire Il concetto di azione a distanza e la sua descrizione come "campi di forze". La fenomenologia elementare e i modelli dei fenomeni elettrici e magnetici, la fenomenologia delle leggi dell'induzione elettromagneticaed il significato di energia elettromagnetica

	Ore dedicate all'argomento	
Argomento (sintetico)	Lezioni/Seminari	Esercitazioni
Vettori e calcolo vettoriale	3	2
Cinematica del punto, corpi in caduta libera, moto del	6	4
proiettile; moto circolare uniforme, moto curvilineo		
Velocità ed accelerazioni relative	2	2
Dinamica del punto materiale: Le leggi di Newton.	6	5
Forze di attrito.		
Lavoro, Energia cinetica e teorema dell'energia	5	4
cinetica. Potenza. Energia potenziale. Conservazione		
dell'energia		
Quantità di moto e sua conservazione. Impulso di	4	3
una forza, Sistemi di punti materiali		
Cinematica rotazionale; dinamica rotazionale.	6	5
Equilibrio di un corpo rigido. Momento angolare e sua		
conservazione.		
Moto armonico semplice. Il pendolo. Oscillazioni.	4	2
Fenomeni elettrici. Legge di Coulomb. Campo	8	5
elettrico. Teorema di Gauss e applicazioni.		
Differenza di potenziale e potenziale elettrico.	6	6
Energia potenziale elettrica. Capacità e condensatori.		
Resistenza e resistività. Legge di Ohm. Forza	6	4
elettromotrice. Circuiti elettrici in corrente continua.		
Circuiti RC.		
Il campo magnetico. Legge di Biot e Savart. Teorema	6	5
di Ampère e applicazioni		
Legge dell'induzíone di Faraday e legge di Lenz.	6	5
Induttanza. Circuiti LR. corrente di Spostamento		
Totale	68	52

TESTI	a) Serway e Jewett, Fisica Per Scienze ed Ingegneria Vol I e Vol II,
CONSIGLIATI	quarta edizione, EdiSes Napoli.

b) P. A. Tipler, G. Mosca, Corso di Fisica Vol 1 e Vol 2, 4° ed., Zanichelli