FACOLTÀ	INGEGNERIA
ANNO ACCADEMICO	2014/15
CORSO DI LAUREA MAGISTRALE	Ingegneria delle Telecomunicazioni
INSEGNAMENTO	Comunicazioni Ottiche
TIPO DI ATTIVITÀ	Attività affini
AMBITO DISCIPLINARE	Attività formative affini o integrative
CODICE INSEGNAMENTO	01751
ARTICOLAZIONE IN MODULI	No
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/01
DOCENTE RESPONSABILE	Alessandro BUSACCA
	Professore
	Università degli studi di Palermo
CFU	6
NUMERO DI ORE RISERVATE ALLO	99
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	51
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Conoscenza dei contenuti degli insegnamenti di
	Fotonica, Microonde, Elettronica delle
	Telecomunicazioni; Microtecnologie; Ottica
	Integrata; Trasmissione Numerica.
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Consultare il sito www.ingegneria.unipa.it
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
	Esercitazioni in laboratorio, Seminari, Visite in
MODALITA DI EDEGLIENZA	campo.
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale e Prova Scritta nelle sessioni
	d'esame, Prove scritte con cadenza settimanale,
THO DI VALUE AZIONE	Presentazione di una Tesina.
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Secondo semestre
CALENDARIO DELLE ATTIVITÀ	Consultare il sito www.ingegneria.unipa.it
DIDATTICHE ODADIO DI DICEVIMENTO DECLI	Tretti i giorni delle 0 elle 0 20
ORARIO DI RICEVIMENTO DEGLI	Tutti i giorni dalle 9 alle 9.30
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente al termine del Corso:

- avrà conoscenza dei fenomeni di propagazione in fibre ottiche standard e in fibre ottiche speciali;
- avrà una conoscenza e comprensione approfondita del canale ottico;
- una consapevolezza critica degli ultimi sviluppi delle comunicazioni ottiche;
- sarà in grado di comprendere l'utilizzo dei campi elettromagnetici e dell'elettronica nelle comunicazioni ottiche;
- capirà i principi utili alla progettazione e collaudo di un canale ottico;

- avrà una visione completa e comprensione approfondita si sistemi di multiplazione, amplificazione, modulazione ricezione e trasmissione di segnali ottici.
- sarà consapevole dell'attuale contesto scientifico multidisciplinare che abbracci i settori dell'Ingegneria Elettronica e delle Telecomunicazioni.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di:

- riconoscere i formati di modulazione ottica e la capacità del canale ottico;
- applicare gli strumenti analitici dei Campi Elettromagnetici, dell'Elettronica, dei Sistemi Elettronici e delle Trasmissioni Numeriche a reali problemi Comunicazione Ottica;
- progettare canali di comunicazione ottica;
- progettare sistemi di misura e collaudo di sistemi di comunicazioni ottica;
- sviluppare le capacità di problem solving sia nel caso di guasto della rete sia nella progettazione a partire dalle specifiche del committente;
- sviluppare la capacità di utilizzare la propria conoscenza e comprensione per concettualizzare modelli e sistemi di progettazione e esecuzione di un canale e di una rete ottica;
- sviluppare la capacità di applicare metodi innovativi e riformulare nuove configurazioni sulla base dello stato dell'arte;
- sviluppare la capacità di usare la propria conoscenza, comprensione e creatività per progettare nuovi e originali sistemi, architetture e componenti per le comunicazioni ottiche.

Autonomia di giudizio

Lo studente sarà in grado di:

- sviluppare la capacità di usare le proprie conoscenze anche in assenza di appropriate e complete specifiche tecniche;
- di identificare, localizzare, quantificare e interpretare attraverso appropriate misure le grandezze ottiche ed elettro-ottiche cercate;
- di progettare e valutare in maniera autonoma, a partire dal budget a disposizione e dalle richieste del committente, un sistema di comunicazione ottica;
- di stabilire in maniera autonoma i componenti più adatti alle prestazioni richieste dal committente;
- di indagare l'applicazione di tecnologie emergenti nel campo delle comunicazioni ottiche, con riferimento ai componenti ottici integrati e alle fibre ottiche speciali;
- sviluppare la capacità di integrare le conoscenze provenienti dai settori della fotonica e delle telecomunicazioni e di gestirne la complessità;
- avere una profonda comprensione delle tecniche fotoniche applicabili e delle loro limitazioni.

Abilità comunicative

Lo studente sarà in grado di:

- acquisire la capacità di comunicare ed esprimere problematiche inerenti le comunicazioni ottiche in lingua italiana ed inglese;
- conoscere le grandezze fisiche e la terminologia delle Comunicazioni Ottiche in lingua italiana ed inglese;
- sarà in grado di sostenere conversazioni su tematiche attuali che riguardano la comunicazione a larga banda in lingua italiana ed inglese;
- usare diversi metodi per comunicare in modo efficace con i colleghi ingegneri sia nei lavori di gruppo sia attraverso presentazioni orali con o senza l'utilizzo di software di presentazione;
- di discorrere con competenza sulle comunicazioni ottiche con colleghi specialistici, di dare direttive a tecnici, di gestire gruppi d'ingegneri e di comunicare anche con non addetti ai lavori;
- di gestire team anche non puramente tecnici e composto da persone competenti in diverse discipline a differenti livelli sia in contesti nazionali sia in quelli internazionali;
- di produrre elaborati scientifici e diffondere conoscenza.

Capacità d'apprendimento

Lo studente sarà in grado di:

- riconoscere la necessità dell'apprendimento autonomo durante tutto l'arco della vita;
- effettuare ricerche bibliografiche in maniera autonoma su argomenti di comunicazioni ottiche;
- di leggere in maniera autonoma un testo specialistico in lingua italiana ed inglese e di comprenderlo;
- di seguire seminari e workshop di comunicazioni e dispositivi ottici e comprendere le relazioni orali e gli atti pubblicati;
- acquisire la capacità di studiare e sperimentare largamente in autonomia e sotto la propria direzione;
- di saper filtrare le informazioni utili e affini alle comunicazioni ottiche da quelle inutili.

OBIETTIVI FORMATIVI

Lo scopo del corso è quello di fornire una conoscenza solida e coordinata dei dispositivi e dei sistemi per le comunicazioni in fibra ottica. Vengono illustrati i criteri di progetto e di valutazione delle prestazioni dei collegamenti in fibra ottica a larga banda con particolare riferimento ai sistemi a multiplazione in divisone di lunghezza d'onda (WDM).

	COMUNICAZIONI OTTICHE	
ORE FRONTALI	LEZIONI FRONTALI	
4	Fibre Ottiche	
4	Dispersione nel canale ottico	
4	Perdite e Attenuazione di un canale ottico	
4	Effetti ottici nonlineari	
4	Fabbricazione componenti ottici in fibra	
3	Trasmettitori ottici	
3	Ricevitori ottici	
4	Progetto e validazione di un sistema di comunicazione ottica	
4	Sistemi di commutazione	
4	Amplificatori ottici	
10	ESERCITAZIONI	
13	6 ore di Esercitazioni teoriche e 7 ore di laboratorio	
TESTI CONSIGLIATI	- G. P. Agrawal, Fiber-Optic Communication Systems, 2nd edition, Wiley	
CONSIGLIATI	Interscience, 1997	
	- Trasparenze/dispense a cura del docente e appunti di lezione	
	- D. K. Mynbaev, L. L. Scheiner, Fiber Optic Communications Technology,	
	Prentice-Hall, Inc., 2001.	
	- B. Crosignani, G. De Marchis, Fibre Ottiche, Edizioni Scientifiche, SIDEREA, 1981	
	- H. Nishihara, H. Masamitsu, S. Toshiaki, Optical Integrated Circuits,	
	McGraw-Hill, 1989	
	- H. Scott Hinton, An introduction to Photonic Switching Fabrics, Plenum	
	Press, 1993	
	- J. Powers, An Introduction to Fiber Optic Systems, Irwin, 1997	
	- B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Wiley-Interscience,	
	1991	
	- P. E. Green, jr., Fiber Optics Networks, Prentice Hall, 1993	