FACOLTÀ	INGEGNERIA
ANNO ACCADEMICO	2012/13
CORSO DI LAUREA MAGISTRALE	Ingegneria delle telecomunicazioni
INSEGNAMENTO	Microonde e Antenne e propagazione (C.I.)
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Ingegneria delle telecomunicazioni
CODICE INSEGNAMENTO	15087
ARTICOLAZIONE IN MODULI	Si
NUMERO MODULI	Due
SETTORI SCIENTIFICO DISCIPLINARI	ING-INF/02
DOCENTE RESPONSABILE	Luigi Zanforlin
	Professore Associato
	Università degli Studi di Palermo
DOCENTE COINVOLTO	Da designare
CFU	15
NUMERO DI ORE RISERVATE ALLO	189
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	186
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Campi elettromagnetici
ANNO DI CORSO	Primo
SEDE DI SVOLGIMENTO DELLE	Consultare l'orario delle lezioni:
LEZIONI	http://portale.unipa.it/Ingegneria/
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali, Esercitazioni in aula,
TODAY MEDICANDA	Esercitazioni in laboratorio
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Scritta e Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	Annuale
CALENDARIO DELLE ATTIVITÀ	Consultare il calendario didattico:
DIDATTICHE	http://portale.unipa.it/Ingegneria/
ORARIO DI RICEVIMENTO DEGLI	Previo appuntamento via e-mail:
STUDENTI	luigi.zanforlin@unipa.it

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Il corso integrato in Antenne e propagazione e Microonde intende portare alla conoscenza degli studenti le problematiche connesse con l'uso delle onde elettromagnetiche per le telecomunicazioni ed i criteri per risolverle. Lo studente, che deve avere conoscenze pregresse di elettromagnetismo, al termine del Corso:

- avrà conoscenza dei fenomeni della generazione e propagazione delle onde elettromagnetiche tenendo conto delle caratteristiche del mezzo e delle perturbazioni atmosferiche;
- conoscerà la tipologia delle antenne più comuni impiegate nelle radiocomunicazioni e sarà in grado di calcolarne le caratteristiche radiative;
- sarà in grado di dimensionare un collegamento radio rispettando le specifiche di progetto;
- avrà conoscenza dei componenti a microonde, sia attivi che passivi;

- avrà conoscenza e capacità di analisi e progettazione di circuiti a microonde
- avrà una chiara conoscenza dei collegamenti via satellite;
- conoscerà il funzionamento del RADAR e saprà valutarne le prestazioni.

Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di:

- applicare gli strumenti analitici della Fisica di base e della Fisica matematica a reali problemi di propagazione di onde elettromagnetiche;
- progettare sistemi radianti;
- risolvere problemi di interferenza elettromagnetica;
- scegliere gli strumenti più appropriati per effettuare misure al fine di valutare le prestazioni di componenti e circuiti a microonde;
- svolgere con approccio ingegneristico incarichi di lavoro applicando appropriati metodi di modellizzazione e ricercando i parametri e le specifiche necessarie.

Autonomia di giudizio

Per l'approccio metodologico, teorico-sperimentale, acquisito durante il corso, egli potrà comprendere le problematiche complesse.

Lo studente sarà in grado di:

- applicare in maniera autonoma la propria conoscenza e la propria comprensione alla soluzione di quegli aspetti della comunicazione per mezzo delle onde elettromagnetiche più diffusi;
- di saper interpretare un catalogo e saper scegliere il componenti, attrezzature e sistemi più adatti alle specifiche che gli vengono richieste sia per quanto riguarda la propagazione nello spazio libero;
- di progettare e condurre esperimenti appropriati, interpretare le misure elettromagnetiche e stabilire le opportune conclusioni sia in termini di rientro che di raggiungimento delle specifiche;
- riconoscere i limiti prestazionali delle differenti tecnologie disponibili;
- decidere, nel caso di problemi non strutturati, sulla necessità di uno sviluppo;
- di effettuare post-abilitazione perizie giurate di tipo tecnico nel settore in oggetto;
- di avere consapevolezza delle implicazioni non tecniche della pratica ingegneristica (rischio e percezione del rischio elettromagnetico)

Abilità comunicative

Lo studente sarà in grado di:

- acquisire la capacità di comunicare ed esprimere problematiche inerenti la generazione e propagazione di onde elettromagnetiche;
- conoscere le grandezze fisiche e la terminologia dell'Elettromagnetismo;
- sarà in grado di sostenere conversazioni su tematiche attuali che riguardano le caratteristiche delle antenne e le problematiche delle radiocomunicazioni;
- usare diversi metodi per comunicare in modo efficace con i colleghi ingegneri sia nei lavori di gruppo sia attraverso presentazioni orali con o senza l'utilizzo di software di presentazione;
- di discorrere con competenza su tematiche delle radiocomunicazioni anche con non addetti ai lavori.

Capacità d'apprendimento

Lo studente sarà in grado di:

- avviarsi nello studio di tematiche complesse quali la progettazione di componentistica ad hoc, la generazione e l'amplificazione delle microonde;
- effettuare ricerche bibliografiche in maniera autonoma su argomenti del settore in oggetto;
- di leggere in maniera autonoma un testo specialistico e di comprenderlo
- di seguire seminari e workshop su antenne e propagazione di onde elettromagnetiche e comprendere

le relazioni orali e gli atti pubblicati.

OBIETTIVI FORMATIVI DEL MODULO: ANTENNE E PROPAGAZIONE

Saper applicare gli strumenti analitici della Fisica di base e della Fisica matematica per la risoluzione di problemi connessi con la generazione e la propagazione di onde elettromagnetiche.

MODULO	ANTENNE E PROPAGAZIONE
ORE FRONTALI	LEZIONI FRONTALI
5	Richiami di Campi elettromagnetici: equazioni di Maxwell; relazioni costitutive; teoremi fondamentali; propagazione per onde.
2	Potenziali elettromagnetici.
4	Campo generato da un dipolo elementare; resistenza di radiazione, diagramma di radiazione, direttività massima.
4	Campo vicino alle sorgenti e campo lontano; approssimazioni per il campo lontano.
5	Antenne filiformi, antenna a spira.
3	Antenne ad apertura.
2	Radiazione da un'apertura rettangolare.
2	Radiazione da guide d'onda troncate.
2	Antenne a settore piramidale.
2	Antenne a riflettore.
2	Antenne a riflettore parabolico
2	Schiere di antenne
2	Schiere lineari uniformi.
1	Antenna Yagi.
1	Temperatura di rumore di un'antenna
2	Antenne riceventi.
1	Area efficace di un'antenna ricevente.
2	Formula di Friis e analisi di un collegamento radio
2	Caratteristiche della ionosfera nell'interazione con onde elettromagnetiche.
4	Caratteristiche della propagazione delle onde radio nelle varie bande di frequenza tenendo conto del suolo, dell'atmosfera e della ionosfera
4	Collegamenti via satellite e valutazione delle prestazioni.
4	Sistemi RADAR, equazione del radar e valutazione delle prestazioni di un radar
1	Radar ad effetto Doppler.
1	Radar monopulse.
	,
	ESERCITAZIONI
36	Esercitazioni sugli argomenti svolti
	- Appunti del corso.
TESTI CONSIGLIATI	 Conciauro: Introduzione alle onde elettromagnetiche. McGraw-Hill. Franceschetti: Campi Elettromagnetici. Boringhieri.

OBIETTIVI FORMATIVI DEL MODULO: MICROONDE

I principali obiettivi formativi del corso consistono nell'acquisizione da parte dello studente di nozioni, metodologie e tecniche per lo studio e l'analisi dei componenti a microonde, sia attivi che passivi e dei circuiti a microonde. Lo studente sarà in grado inoltre di valutarne le prestazioni mediante appropriati sistemi di misura.

MODULO	MICROONDE
ORE FRONTALI	LEZIONI FRONTALI
3	Le basi della propagazione elettromagnetica
7	La propagazione guidata
4	Circuiti a microonde
3	Circuiti risonanti e cavità
6	Componenti passivi a microonde
6	Filtri a microonde e adattatori di impedenza
7	Circuiti attivi e non lineari
5	Metodi numerici e CAD
4	Circuiti monolitici a microonde
15	Strumentazione e misura
	ESERCITAZIONI
30	Esercitazioni teoriche e da laboratorio
TESTI CONSIGLIATI	R. Sorrentino, G. Bianchi: Ingegneria delle microonde e radiofrequenze. McGraw-Hill