SCUOLA	delle Scienze di Base e Applicate
ANNO ACCADEMICO	2014/2015
CORSO DI LAUREA MAGISTRALE A	Chimica e Tecnologia Farmaceutiche – 2013
CICLO UNICO	
INSEGNAMENTO	BIOCHIMICA
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline biologiche e farmacologiche
CODICE INSEGNAMENTO	01542
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	
SETTORI SCIENTIFICO DISCIPLINARI	BIO/10
DOCENTE RESPONSABILE	Mario ALLEGRA
	Ricercatore
	Università di Palermo
CFU	10
NUMERO DI ORE RISERVATE ALLO	175
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	75
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica Generale ed inorganica
ANNO DI CORSO	II
SEDE DI SVOLGIMENTO DELLE	Dipartimento di STEBICEF
LEZIONI	
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Facoltativa
METODI DI VALUTAZIONE	Prova Orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	primo semestre
CALENDARIO DELLE ATTIVITÀ	http://offweb.unipa.it/
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Lo studente dovrà avere sviluppato la capacità di comprendere le sequenze metaboliche nel contesto delle strutture biologiche in cui sono svolte, i meccanismi di regolazione all'uopo predisposti, e le relazioni fra gli eventi biochimici a livello cellulare e gli eventi funzionali dell'intero organismo.

Capacità di applicare conoscenza e comprensione

Lo studente dovrà avere sviluppato la capacità di applicare le conoscenze ed i concetti di tipo biochimico allo studio e meccanismo di azione di molecole farmacologiche

Autonomia di giudizio

Lo studente dovrà avere l'abilità di reperire ed usare dati utili alla soluzione di quesiti specifici di tipo teorico, o di specifici problemi sperimentali.

Abilità comunicative

Lo studente dovrà essere in grado di esporre concetti generali di natura biochimica in maniera chiara e semplice sia a persone del campo medico-scientifico che a non esperti del settore.

Capacità d'apprendimento

Lo studente dovrà esser in grado di aggiornare le proprie conoscenze con la consultazione di letteratura scientifica appropriata, e dovrà avere la capacità di seguire, corsi di approfondimento, e seminari specialistici.

OBIETTIVI FORMATIVI DEL CORSO

Il corso di BIOCHIMICA mira a fornire una immagine integrata dei sistemi biochimici che consentono la vita delle cellule, correlando il significato di specifici eventi biochimici al contesto più generale del funzionamento dell'organismo nel suo complesso. A tale scopo saranno studiati i componenti molecolari delle cellule, le strutture da essi formate, le reazioni principali a livello di tali strutture ed i meccanismi coinvolti; il funzionamento degli enzimi e la bioenergetica; le vie metaboliche fondamentali utilizzate per rifornire le cellule di energia e le vie di utilizzazione dell'energia metabolica, nonchè la loro regolazione. Attenzione infine sarà data ad alcuni aspetti molecolari della biologia cellulare, ed ad alcuni aspetti della biochimica d'organo.

CORSO	BIOCHIMICA
ORE FRONTALI	LEZIONI FRONTALI
5	Presentazione della materia. Flusso di energia nella biosfera. Principi generali di
	bioenergetica e termodinamica applicata ai viventi. La cellula e le sue parti. Componenti
	molecolari delle cellule.
12	Struttura delle membrane. Processi di trasporto di molecole e ioni attraverso le membrane.
6	Trasporto di ossigeno. Emoglobina e Mioglobina. Equilibrio acido-base.
8	Enzimi e catalisi.
6	Fosforilazione ossidativa.
10	Controllo della sintesi e degradazione del glicogeno. Ruolo del fegato nella destinazione
	metabolica del glucoso. Glicolisi. Ciclo dell'acido citrico. Bilancio energetico. Percorso del
	pentoso fosfato. Gluconeogenesi. Meccanismi shuttle.
6	Mobilitazione di acidi grassi dai depositi. Degradazione di acidi grassi. Formazione di corpi
	chetonici. Correlazioni metaboliche tra chetogenesi e gluconeogenesi. Biosintesi di acido
	grasso. Allungamento ed insaturazione. Acidi grassi esenziali e generazione di
	prostaglandine. Colesterolo. Controllo della sterologenesi. Catabolismo del colesterolo.
	Trasporto di lipidi nel sangue. Lipoproteine plasmatiche.
6	Amino acidi essenziali e non essenziali. Catabolismo degli amino acidi. Transaminazione,
	Deaminazione, Decarbossilazione. Destino metabolico dell'ammoniaca. Ureagenesi.
	Aminoacidi glicogenici e chetogenici. Interrelazioni metaboliche. Regolazione ormonale del metabolismo.
4	
4	Degradazione di eme e generazione dei pigmenti biliari. Biosintesi di nucleotidi purinici e pirimidinici. Importanza degli acidi folici. Formazione di
	acido urico.
8	Percorsi cellulari di trasduzione di segnali. Meccanismi di azione di ormoni e composti
O	ormono-simili. Ciclo cellulare, apoptosi e fattori di crescita. Produzione di specie reattive di
	ossigeno e meccanismi di difesa antiossidante.
4	Vitamine idrosolubili. Vitamine liposolubili. Coagulazione del sangue ed emostasi.
,	Membrane eccitabili. Ciclo visivo. Contrazione muscolare.
TESTI	Nelson, Cox. Principi di Biochimica di Lehninger, 5 Edizione, Zanichelli
CONSIGLIATI	Berg-Tymoczko-Stryer, Biochimica, 7 edizione, Zanichelli
	Voet, Voet. Biochimica, Zanichelli