FACOLTÀ	Scienze MM. FF. NN.
ANNO ACCADEMICO	2014-2015
CORSO DI LAUREA	Chimica
INSEGNAMENTO	Chimica fisica 1
TIPO DI ATTIVITÀ	Caratterizzante
AMBITO DISCIPLINARE	Discipline chimiche inorganiche e chimico-
	fisiche
CODICE INSEGNAMENTO	16158
ARTICOLAZIONE IN MODULI	NO
NUMERO MODULI	1
SETTORI SCIENTIFICO DISCIPLINARI	CHIM/02
DOCENTE RESPONSABILE	Vincenzo Turco Liveri
	Professore Ordinario
	Università di Palermo
CFU	8
NUMERO DI ORE RISERVATE ALLO	136
STUDIO PERSONALE	
NUMERO DI ORE RISERVATE ALLE	64
ATTIVITÀ DIDATTICHE ASSISTITE	
PROPEDEUTICITÀ	Chimica Generale ed inorganica, Esercitazioni
	di preparazioni chimiche con laboratorio
ANNO DI CORSO	secondo
SEDE	Aula A ed. 17 Viale delle Scienze
ORGANIZZAZIONE DELLA DIDATTICA	Lezioni frontali
MODALITÀ DI FREQUENZA	Obbligatoria
METODI DI VALUTAZIONE	Prova orale
TIPO DI VALUTAZIONE	Voto in trentesimi
PERIODO DELLE LEZIONI	secondo semestre
CALENDARIO DELLE ATTIVITÀ	Secondo il calendario approvato dal CISC
DIDATTICHE	
ORARIO DI RICEVIMENTO DEGLI	Lunedi, mercoledi e venerdi ore 11-13
STUDENTI	

RISULTATI DI APPRENDIMENTO ATTESI

Conoscenza e capacità di comprensione

Acquisizione dei principi termodinamici che regolano gli scambi energetici tra sistemi chimici e la conversione tra differenti forme di energia. Comprensione della relazione tra proprietà molecolari e comportamento macroscopico della materia. Comprensione microscopica della spontaneità dei processi.

Capacità di applicare conoscenza e comprensione

Sviluppo della capacità di applicazione delle leggi che regolano l'equilibrio di fase e chimico in sistemi a più componenti e a più fasi e delle leggi che determinano la reattività dei sistemi chimici e la velocità di reazione.

Autonomia di giudizio

Sviluppo della capacità di valutare criticamente la letteratura scientifica pertinente.

Abilità comunicative

Capacità di comunicare mediante il linguaggio scientifico le conoscenze acquisite

Capacità d'apprendimento

Sviluppo della capacità di organizzare in maniera autonoma l'acquisizione di ulteriori conoscenze nel settore della chimica fisica

OBIETTIVI FORMATIVI DEL CORSO

Obiettivo del corso è fornire una conoscenza approfondita dei principi termodinamici e delle leggi di cinetica chimica essenziali per una trattazione quantitativa delle reazioni chimiche in condizioni di equilibrio e fuori dall'equilibrio, contribuendo così a fornire una solida base in Chimica che consenta al laureato di primo livello di svolgere attività lavorative in vari laboratori chimici (controllo e analisi, ambito industriale, ambiente ed energia, Beni Culturali, Scienza dei materiali, etc) perseguendo finalità teoriche o applicative e utilizzando nuove metodologie e attrezzature complesse.

CORSO	CHIMICA FISICA 1
ORE FRONTALI	LEZIONI FRONTALI
1	Introduzione al corso
2	Definizione di sistema, proprietà macroscopiche/microscopiche/molecolari di
	un sistema, processo e condizione di equilibrio
2	Fluttuazioni locali delle proprietà e riproducibilità dei processi
2	Principio zero e temperatura, equilibrio termico e aspetti microscopici
2	Conduzione, convezione, irraggiamento
4	Energia, lavoro, calore, processi reversibili e irreversibili, aspetti microscopici
2	Calcolo del lavoro e calore in processi chimico fisici
2	Conservazione dell'energia ed esperimenti di Joule
2	1° principio, processi a P, T, V costanti, processi adiabatici
3	Termochimica, calori di reazione, dipendenza del ΔH di reazione dalla
	temperatura, aspetti microscopici
2	Entalpie di formazione e calcolo dei calori di reazione
7	Secondo principio, entropia, spontaneità dei processi, criteri di spontaneità,
	calcolo dell'entropia, aspetti microscopici
2	Produzione di entropia nei processi irreversibili
7	Energia libera, equilibri chimici e di fase, calcolo della costante di equilibrio,
	potenziale chimico
3	Trattazione termodinamica delle proprietà colligative
3	La regola delle fasi, il terzo principio
2	I diagrammi di stato e gli equilibri chimici in sistemi eterogenei
3	Sistemi ideali e reali, attività e fugacità, trattazione termodinamica di sistemi
	reali
2	Calcolo delle concentrazioni di equilibrio in sistemi reali
2	Cinetica chimica: aspetti applicativi e microscopici
2	Velocità di reazione, equazione cinetica, metodi sperimentali
2	Ordine di reazione e metodo dell'integrazione
2	Meccanismi di reazione, teoria delle collisioni
3	Teoria del complesso attivato, processi controllati dalla diffusione, catalisi
meant	
TESTI CONSIGLIATI	-K Denbigh, I principi dell'equilibrio chimico, Ed. CEA
CONSIGLIATI	-P. W. Atkins, Chimica Fisica, Ed. Zanichelli
	-appunti delle lezioni